

    
      
          
            
  
LiPyphilic: A love of lipids and python!

A Python toolkit for the analysis of lipid membrane simulations

[image: Powered by MDAnalysis] [https://www.mdanalysis.org]
[image: Conda-fogre latest release] [https://anaconda.org/conda-forge/lipyphilic]
[image: PyPI Package latest release] [https://pypi.org/project/lipyphilic]
[image: Documentation Status] [https://readthedocs.org/projects/lipyphilic]
[image: Travis-CI Build Status] [https://travis-ci.com/github/p-j-smith/lipyphilic]
[image: Coverage Status] [https://codecov.io/github/p-j-smith/lipyphilic]
[image: LGTM code quality] [https://lgtm.com/projects/g/p-j-smith/lipyphilic/context:python]
[image: Supported versions] [https://pypi.org/project/lipyphilic]
[image: Requirements Status] [https://requires.io/github/p-j-smith/lipyphilic/requirements/?branch=master]
[image: binder] [https://mybinder.org/v2/gh/p-j-smith/lipyphilic-tutorials/main?filepath=notebooks%2F1-Introduction.ipynb]

lipyphilic is free software licensed under the GNU General Public License v2 or later (GPLv2+)


Overview

lipyphilic is a set of tools for analysing MD simulations of lipid bilayers. It is an object-oriented
Python package built directly on top of MDAnalysis [https://www.mdanalysis.org/], and makes use of
NumPy [https://numpy.org/] and SciPy [https://www.scipy.org/]  for efficient computation.
The analysis classes are designed with the same interface as those of MDAnalysis - so if you know how to
use analysis modules in MDAnalysis [https://userguide.mdanalysis.org/stable/examples/quickstart.html#Analysis] then learning lipyphilic
will be a breeze.

Analysis tools in lipyphilic include: identifying sterol flip-flop events, calculating domain registration over time,
and calculating local lipid compositions. lipyphilic also has three on-the-fly trajectory transformations to i) fix
membranes split across periodic boundaries and ii) perform nojump coordinate unwrapping and iii) convert triclinic coordinates
to their orthorhombic representation.

These tools position lipyphilic as complementary to, rather than competing against, existing membrane analysis
software such as MemSurfer [https://github.com/LLNL/MemSurfer] and FatSlim [http://fatslim.github.io/].



Interactive tutorials

[image: _images/badge_logo.svg]
 [https://mybinder.org/v2/gh/p-j-smith/lipyphilic-tutorials/main?filepath=notebooks%2F1-Introduction.ipynb]We recommend new users take a look out our interactive tutorials. These will show you how to get the most out of lipyphilic



Basic Usage

Alternatively, check out the Basic Usage [https://lipyphilic.readthedocs.io/en/stable/usage.html] example to see how to use
lipyphilic, and see the Analysis tools [https://lipyphilic.readthedocs.io/en/stable/reference/analyses.html]
section for detailed information and examples on each tool.



Installation

The easiest way to install lipyphilic along with its dependencies is through Conda [https://docs.conda.io/en/latest/index.html]:

conda config --add channels conda-forge
conda install lipyphilic





See the installation guide [https://lipyphilic.readthedocs.io/en/stable/installation.html] for futher information.



Citing

If you use lipyphilic in your research, please cite our paper:

@article{LiPyphilic2021,
    author = {Smith, Paul and Lorenz, Christian D.},
    title = {LiPyphilic: A Python Toolkit for the Analysis of Lipid Membrane Simulations},
    journal = {Journal of Chemical Theory and Computation},
    year = {2021},
    volume = {17},
    number = {9},
    pages = {5907-5919},
    doi = {10.1021/acs.jctc.1c00447}
}





Please also cite MDAnalysis [https://www.mdanalysis.org/pages/citations/], on which lipyphilic is built.
If you use the Area Per Lipid tool please also cite Freud [https://freud.readthedocs.io/en/stable/reference/citing.html].
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Installation


Conda

The easiest way to install lipyphilic is through the conda-forge [https://anaconda.org/conda-forge] channel of Conda [https://docs.conda.io/en/latest/index.html]:

conda config --add channels conda-forge
conda install lipyphilic





This will install lipyphilic along with all of its dependencies.

If you do not already have Conda installed on your machine, we recommend
downloading and installing Miniconda [https://docs.conda.io/en/latest/miniconda.html]
— a lightweight version of Conda.



PyPI

It’s also possible to install lipyphilic from the Python Package
Index [https://pypi.org/]. If you already have the necessary dependencies [https://raw.githubusercontent.com/p-j-smith/lipyphilic/master/requirements.yml] installed,
you can use pip [https://pypi.org/project/pip/] to install lipyphilic:

pip install lipyphilic





Alternatively, you can also install the in-development version with:

pip install https://github.com/p-j-smith/lipyphilic/archive/master.zip







Dependencies [https://raw.githubusercontent.com/p-j-smith/lipyphilic/master/requirements.yml]

lipyphilic uses MDAnalysis [https://www.mdanalysis.org/] to carry out all analysis
calculations, and Freud [https://freud.readthedocs.io/en/stable/] for performing
Voronoi tessellations.

As mentioned above, the simplest way to install these packages,
along with lipyphilic, is with Conda [https://docs.conda.io/en/latest/index.html].
However, it is also possible to install MDAnalysis and Freud using pip, or from source. See
the MDAnalysis [https://userguide.mdanalysis.org/stable/installation.html] and
Freud [https://freud.readthedocs.io/en/stable/gettingstarted/installation.html]
installation instructions for further information.





            

          

      

      

    

  

    
      
          
            
  
Basic Usage

The analysis tools in lipyphilic all require an MDAnalysis Universe [https://userguide.mdanalysis.org/stable/universe.html] as input, so to use lipyphilic you will also
need to import MDAnalysis. The analyses are then performed in the same way as the majority of those
in MDAnalysis. For example, to assign each lipid to the upper or lower leaflet at each frame in a trajectory:

import MDAnalysis as mda
from lipyphilic.lib.assign_leaflets import AssignLeaflets

# Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

# Find which leaflet each lipid is in at each frame
leaflets = AssignLeaflets(
    universe=u,
    lipid_sel="name PO4 ROH"  # Select headgroup beads in the MARTINI forcefield
)

# Select which frames to use and perform the analysis
leaflets.run(start=None, stop=None, step=None)  # this will use every frame in the trajectory





And the results will be available as a NumPy array stored in the leaflets.leaflets attribute.

For more details on how to use lipyphilic, check out our interactive tutorials.




            

          

      

      

    

  

    
      
          
            
  




Interactive tutorials

To help you get the most out of lipyphilic, we have created a set of interactive tutorials
in the form of Jupyter Notebooks. There is no need to download or install anything, simply click
the link below:

[image: ../_images/badge_logo.svg]
 [https://mybinder.org/v2/gh/p-j-smith/lipyphilic-tutorials/main?filepath=notebooks%2F1-Introduction.ipynb]We currently have tutorials on the following topics:


	
Basic usage: Illustrates basic usage of lipyphilic, including how to store results for later usage.

Also shows how to assign lipids to leaflets, which is required for many other analyses.





	
Flip-flop rate: Shows how to use lipyphilic to calculate the rate of cholesterol flip-flop, as well as

identify the frames at which each flip-flop event begins and ends.





	
Local lipid environments: Illustrates how to determine the local lipid environment of each lipid

over time, as well as the enrichment/depletion index.





	
Lipid domains: Shows how to calculate the largest cluster of specific lipids over time. Examples

include finding the largest ganglioside cluster in a neuronal plasma membrane and identifying

the largest domain of Lo lipids in a phase separated membrane.





	
Interleaflet registration: This notebook shows how to calculate the interleaflet registration over

time. The example shows how to calculate the registration of Lo lipids across leaflets.





	
Lateral diffusion: Illustrates how to perform “nojump” trajectory unwrapping with LiPyphilic,

then use the unwrapped coordinates to calculate the mean-squared displacement and lateral

diffusion coefficient of lipids in a membrane.





	
Coarse-grained lipid order parameter: Shows how to calculate the coarse-grained order

parameter, and how to create a two-dimensional projection of these values onto the membrane

plane.





	
Projection plots: Shows how to create two-dimensional projections of arbitrary lipid properties

onto the membrane plane. Examples include projecting local membrane thicknesses calculated

using FATSLiM [http://fatslim.github.io/] onto the membrane plane, and projecting the ordered state (Lo and Ld) of lipids

onto the membrane plane.





	
Potential of mean force (PMF): This notebook illustrates how to use lipyphilic to calculate the

height and orientation of sterols in a membrane, and subsequently plot the two-dimensional

PMF of sterol height and orientation.





	
Hidden Markov Models (HMM): Learn how to use the output of lipyphilic to construct HMMs

with HMMLearn [https://hmmlearn.readthedocs.io/en/latest/]. We will create a HMM based on lipid thicknesses to detect Lo and Ld lipids in a

phase separated membrane. The output from this is can be used as input to other

analyses in lipyphilic, such as calculating interleaflet registration or local lipid environments.










            

          

      

      

    

  

    
      
          
            
  




Overview of analysis tools

Here we provide a brief description of the analysis tools currently available in lipyphilic.
For more information on each analysis tool, including details of all optional input parameters
see the API. To learn more about how to use lipyphilic, check out our
interactive tutorials.


Assign leaflets: lipyphilic.lib.assign_leaflets

This module provides methods for assigning lipids to leaflets in a bilayer. Leaflet
assignment is based on the distance in z from a lipid the midpoint of the bilayer.
Lipids may be assigned to the upper leaflet (indicated by 1), the lower leaflet (-1)
or the bilayer midplane (0).

Below we see how to assign lipids to the upper or lower leaflet of a MARTINI [http://cgmartini.nl/] bilayer:

import MDAnalysis as mda
from lipyphilic.lib.assign_leaflets import AssignLeaflets

# Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

# Find which leaflet each lipid is in at each frame
leaflets = AssignLeaflets(
  universe=u,
  lipid_sel="name PO4 ROH"
)

# Select which frames to use and perform the analysis
leaflets.run(start=None, stop=None, step=None)  # this will use every frame in the trajectory





The results are stored as a NumPy array of shape (n_lipids, n_frames) in the
leaflets.leaflets attribute.

If you have used a different force field, you simply need to change the lipid_sel to
select the relevant headgroup atoms of your lipids. See the MDAnalysis selection language [https://userguide.mdanalysis.org/stable/selections.html] for more info on how to select atoms.

By default, lipids are only allowed to be in the upper (1) or lower (-1) leaflet. See
lipyphilic.lib.assign_leaflets for more information on selecting which molecules are allowed
in the midplane.


Note

Assignment of lipids to leaflets is not in itself useful, but it is required in order to calculate,
for example, area per lipid, interleaflet correlations, and flip-flop rates.





Flip-flop: lipyphilic.lib.flip_flop

This module provides methods for detecting the flip-flop of molecules in a lipid bilayer. A flip-flop
occurs when a molecule - typically a sterol - moves from one leaflet of a bilayer into the opposing
leaflet.

To find all flip-flop events, we first should assign lipids to leaflets as seen in the above example,
then:

import MDAnalysis as mda
from lipyphilic.lib.flip_flop import FlipFlop

# Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

flip_flops = FlipFlop(
  universe=u,
  lipid_sel="name ROH",  # select molecules that may flip-flop
  leaflets=leaflets.filter_leaflets("name ROH")
)

flip_flops.run(start=None, stop=None, step=None)





The results are stored as a NumPy array of shape (n_flip_flops, 4) in the
flip_flops.flip_flops attribute. Each row is a single flip-flop event, and the four columns
correspond to: the residue index of the flip-flopping molecule; the frame at which the molecule
left its original leaflet; the frame at which it entered its new leaflet; the leaflet ID to which
it moves.

See lipyphilic.lib.flip_flop for more information on how flip-flop is detected and options such
as specifying how long a molecule must residue in the new leaflet for the flip-flop to be considered
successful.



Interlealet registration: lipyphilic.lib.registration

This module provides methods for determining registration of leaflets in a bilayer. Registration is
defined by the pearson correlation coefficient of molecular densities in the two leaflets. This is
an implementation of the method described by Thallmair et al. (2018) [https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b01877].

To calculate the interleaflet correlation of cholesterol, we first need to calculate which leaflet each
lipid is in at each frame using lipyphilic.lib.assign_leaflets.AssignLeaflets. Then we pass
atom selections for which density correlations will be calculated, along with the relevant leaflet
membership data, to Registration:

import MDAnalysis as mda
from lipyphilic.lib.registration import Registration

# Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

registration = Registration(
  upper_sel="resname CHOL and name ROH",
  lower_sel="resname CHOL and name ROH",
  leaflets=leaflets.filter_leaflets("name ROH")
)

registration.run(start=None, stop=None, step=None)





The results are stored in a NumPy array of shape (n_frames), containing the pearson correlation
coefficient of cholesterol densities in the two leaflets. The data are accessible via the
registration.registration attribute.

As well as calculating registration of lipid species across the two leaflets, it is also possible
to calculate the registration of arbitrary user-defined values across the two leaflets. For example,
if you have created a Hidden Markov Model to assign lipids to the Ld or Lo phase [https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00828], you can calculate the registration of
Lo lipids across the two leaflets. See lipyphilic.lib.registration for more details.



Neighbours: lipyphilic.lib.neighbours

This module provides methods for finding neighbouring lipids in a bilayer. Lipids are neighbours if
they are within a user-defined cutoff of one another.

Below we see how to find all neighbours in a MARTINI bilayer based on the ‘GL1’ and ‘GL2’ beads of
phospholipids and the ‘ROH’ bead of sterols, using a cutoff of 12 Å:

import MDAnalysis as mda
from lipyphilic.lib.neighbours import Neighbours

# Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

# Find neighbouring lipids
neighbours = Neighbours(
  universe=u,
  lipid_sel="name GL1 GL2 ROH",
  cutoff=12.0
)

neighbours.run(start=None, stop=None, step=None)





The results are stored in the neighbours.neighbours attribute as a NumPy array of SciPy sparse
matrices (of type scipy.sparse.csc_matrix). Each sparse matrix contains the lipid neighbours at
a given frame.


Tip

Once the neighbour matrices has been generated, the local lipid compositions or the largest lipids cluster
at each frame can be readily.



See lipyphilic.lib.neighbours for more information on this module, including how to calculate
local lipid compositions or the lipid enrichment/depletion index, and how to find the largest cluster of
a given lipid species over time.



Area per lipid: lipyphilic.lib.area_per_lipid

This module provides methods for calculating the area per lipid. Areas are calculated via a 2D
Voronoi tessellation, using the locality module of
Freud [https://freud.readthedocs.io/en/stable/index.html#] to perform the tessellation
of atomic positions. See Lukat et al. (2013) [https://pubs.acs.org/doi/full/10.1021/ci400172g]
a thorough description of calculating the area per lipid via Voronoi tessellations.

Once lipids have been assigned to leaflets, the area per lipid can be calculated as follows:

import MDAnalysis as mda
from lipyphilic.lib.area_per_lipid import AreaPerLipid

# Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

areas = AreaPerLipid(
  universe=u,
  lipid_sel="name GL1 GL2 ROH",  # assuming we're using the MARTINI forcefield
  leaflets=leaflets.leaflets
)

areas.run(start=None, stop=None, step=None)





The above will use GL1 and GL2 beads to calculate the area of each phospholipid, and the
ROH bead to calculate the area of each sterol.

For a more complete description of calculating the area per lipid, and the API of the
analysis class, see lipyphilic.lib.area_per_lipid.



Lipid order parameter — lipyphilic.lib.order_parameter

This module provides methods for calculating the coarse-grained orientational order
parameter of acyl tails in a lipid bilayer. The coarse-grained order parameter, \(S_{CC}\),
is a measure of the degree of ordering of an acyl tail, based on the extent
to which the vector connecting two consecutive tail beads is aligned with the membrane
normal.

See Seo et al. (2020) [https://pubs.acs.org/doi/full/10.1021/acs.jpclett.0c01317] for
a definition of \(S_{CC}\) and Piggot et al. (2017) [https://pubs.acs.org/doi/full/10.1021/acs.jctc.7b00643] for an excellent discussion
on acyl tail order parameters in molecular dynamics simulations.

To calculate \(S_{CC}\), we need to provide an atom selection for the beads
in a single tail of lipids in the bilayer — that is, either the sn1 or sn2
tails, not both. If we have performed a MARTINI simulation, we can calculate the
\(S_{CC}\) of all sn1 tails of phospholipids as follows:

import MDAnalysis as mda
from lipyphilic.lib.order_parameter import SCC

# Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

scc = SCC(
  universe=u,
  tail_sel="name ??A"
)





The above makes use of the powerful MDAnalysis selection language [https://userguide.mdanalysis.org/stable/selections.html]. It will select beads such as
C1A, C2A, D2A etc. This makes it simple to quickly calculate
\(S_{CC}\) for the sn1 tails of all species in a bilayer.

To see how to calculate \(S_{CC}\) using local membrane normals to define the molecular axes,
as well as the full API of the class, see lipyphilic.lib.order_parameter.



Lipid \(z\) angles: lipyphilic.lib.z_angles

This module provides methods for calculating the angle lipids make with the
positive \(z\) axis. If we define the orientation of MARTINI cholesterol as the
angle between the \(z\)-axis and the vector from the the ‘R5’ bead to the ‘ROH’ bead,
we can calculate the orientation of each cholesterol molecule as follows:

import MDAnalysis as mda
from lipyphilic.lib.z_angles import ZAngles

# Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

z_angles = ZAngles(
  universe=u,
  atom_A_sel="name R5",
  atom_B_sel="name ROH"
)

z_angles.run(start=None, stop=None, step=None)





The results are stored in a numpy.ndarray of shape (n_residues, n_lipids) in the
z_angles.z_angles attribute.

For more information on this module, including how to return the angles in radians rather
than degrees, see lipyphilic.lib.z_angles.



Lipid \(z\) positions: lipyphilic.lib.z_positions

This module provides methods for calculating the height in \(z\) of lipids from the
bilayer center.

If we have used the MARTINI forcefield to study a phospholipid/cholesterol mixture,
we can calculate the height of cholesterol in the bilayer as follows:

import MDAnalysis as mda
from lipyphilic.lib.z_positions import ZPositions

# Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

z_positions = ZPositions(
  universe=u,
  lipid_sel="name GL1 GL2 ROH",
  height_sel="name ROH",
  n_bins=10
)

z_positions.run(start=None, stop=None, step=None)





lipid_sel is an atom selection that covers all lipids in the bilayer. This
is used for calculating the membrane midpoint. height_sel selects which
atoms to use for calculating the height of each lipid.

Local membrane midpoints are calculated by creating a grid of
membrane patches, with the number of grid points controlled with the n_bins
parameter. The distance in \(z\) of each lipid to its local midpoint is then calculated.

Data are returned in a numpy.ndarray of shape (n_residues, n_frames). See
lipyphilic.lib.z_positions for more information on this module including the
full API of the class.



Lipid \(z\) thickness: lipyphilic.lib.z_thickness

This module provides methods for calculating the thickness, in \(z\), of lipid tails.
This is defined as the maximum distance in \(z\) between to atoms in a tail.

If we have used the MARTINI forcefield to study a DPPC/DOPC/cholesterol mixture,
we can calculate the thickness of DPPC and DOPC sn1 tails, as well as the thickness
of cholesterol, as follows:

import MDAnalysis as mda
from lipyphilic.lib.z_positions import ZThickness

# Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

z_thickness = ZThickness(
  universe=u,
  lipid_sel="(name ??1 ??A) or (resname CHOL and not name ROH)"
)

z_thickness.run()





The above makes use of the powerful MDAnalysis atom selection language to select the DPPC
and DOPC sn1 tails along with cholesterol.

The thickness data are stored in a numpy.ndarray of shape (n_residues, n_frames)
in the z_thickness.z_thickness attribute. See lipyphilic.lib.z_thickness for
the full API of the class.



Membrane \(z\) thickness: lipyphilic.lib.memb_thickness

This module provides methods for calculating the bilayer thickness. It is defined as the
peak-to-peak distance of lipid headgroup density in \(z\).

Lipids must first be assigned to the upper and lower leaflets. This can be done with the
class lipyphilic.lib.assign_leaflets.AssignLeaflets. Then, to calculate the membrane
thickness we need to define which atoms to treat as headgroup atoms and pass the leaflet
membership information to MembThickness. If we have studied a DPPC/DOPC/cholesterol
mixture with MARTINI, we could calculate the membrane thickness as follows:

import MDAnalysis as mda
from lipyphilic.lib.z_positions import ZThickness

# Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

memb_thickness = MembThickness(
  universe=u,
  leaflets=leaflets.filter_leaflets("resname DOPC and DPPC"),  # exclude cholesterol from thickness calculation
  lipid_sel="resname DPPC DOPC and name PO4"
)

memb_thickness.run()





The results are then available in the memb_thickness.memb_thickness attribute as a
numpy.ndarray.

For more information on calculating membrane thickness, including options to calculating local
membrane thicknesses rather than a single global thickness, see lipyphilic.lib.memb_thickness.



Lateral diffusion lipyphilic.lib.lateral_diffusion

This module contains methods for calculating the mean squared displacement (MSD) and lateral
diffusion coefficient, \(D_{xy}\),of lipids in a bilayer.

The MSD of all lipids in a DPPC/DOPC/cholesterol MARTINI bilayer can be calculated using
lipyphilic.lib.lateral_diffusion.MSD:

import MDAnalysis as mda
from lipyphilic.lib.lateral_diffusion import MSD

# Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

msd = MSD(
  universe=u,
  lipid_sel="name PO4 ROH"
)

 msd.run()





The MSD of each lipid is then available in the msd.msd attribute as a numpy.ndarray,
and the lagtimes are stored in the msd.lagtimes attribute.

For more information on this module, including how to calculate the lateral diffusion coefficient,
see lipyphilic.lib.lateral_diffusion.



Plotting utilities: lipyphilic.lib.plotting

lipyphilic can produce joint probability density plots (or PMFs if a temperature is provided),
as well as density maps of membrane properties projected onto the membrane plane. The former may be
used to plot, for example, the PMF of cholesterol orientation and height in a bilayer. The latter
may be used to generate plots of, for example, the area per lipid as a function of \(xy\) in
the membrane plane.

See lipyphilic.lib.plotting for the full API of lipyphilic.lib.plotting.JointDensity
and lipyphilic.lib.plotting.ProjectionPlot.



On-the-fly transformations lipyphilic.transformations

lipyphilic contains a module for applying on-the-fly transformation to atomic coordinates
while iterating over a trajectory. These are available in the module lipyphilic.transformations.

There are three transformations available in lipyphilic:


	
lipyphilic.transformations.nojump, which prevents atoms from jumping across periodic

boundaries. This is useful when calculating the lateral diffusion of lipids.





	
lipyphilic.transformations.center_membrane, which can take a membrane that is split

across periodic boundaries, make it whole and center it in the box.





	
lipyphilic.transformations.triclinic_to_orthorhombic, which transforms triclinic coordinates

into their orthorhombic representation.







See lipyphilic.transformations for full details on these transformations including how to apply
them to your trajectory.





            

          

      

      

    

  

    
      
          
            
  
API

See the following pages for the full API of each tool:



	Assign leaflets — lipyphilic.lib.assign_leaflets

	Flip-flop — lipyphilic.lib.flip_flop

	Registration — lipyphilic.lib.registration

	Neighbours — lipyphilic.lib.neighbours

	Area per lipid — lipyphilic.lib.area_per_lipid

	Lipid order parameter — lipyphilic.lib.order_parameter

	Lipid z angles — lipyphilic.lib.z_angles

	Lipid z positions — lipyphilic.lib.z_positions

	Lipid z thickness — lipyphilic.lib.z_thickness

	Membrane thickness — lipyphilic.lib.memb_thickness

	Lateral diffusion — lipyphilic.lib.lateral_diffusion

	Plotting utilities — lipyphilic.lib.plotting

	Trajectory transformations — lipyphilic.transformations








            

          

      

      

    

  

    
      
          
            
  
Assign leaflets — lipyphilic.lib.assign_leaflets


	Author

	Paul Smith



	Year

	2021



	Copyright

	GNU Public License v2





This module provides methods for assigning lipids to leaflets in a bilayer.


Assigning leaflets in planar bilayers

The class lipyphilic.lib.assign_leaflets.AssignLeaflets assigns
each lipid to a leaflet based on the distance in z to the midpoint of
the bilayer. Lipids may be assigned to the upper leaflet (indicated by 1),
the lower leaflet (-1) or the bilayer midplane (0).


Input


	Required:
	
	universe : an MDAnalysis Universe object


	lipid_sel : atom selection for all lipids in the bilayer, including e.g. sterols






	Options:
	
	midplane_sel : atom selection for lipid that may occupy the midplane


	midplane_cutoff : atoms within this distance from the midpoint are considered to be the midplane


	n_bins : split the membrane into n_bins * n_bins patches, and calculate local membrane midpoints for each patch










Output



	leaflets : leaflet to which each lipid is assigned at each frame







Leaflet data are returned in a numpy.ndarray, where each row corresponds
to an individual lipid and each column corresponds to an individual frame, i.e.
leaflets[i, j] refers to the leaflet of lipid i at frame j. The results are
accessible via the AssignLeaflets.leaflets attribute.



Example usage of AssignLeaflets

An MDAnalysis Universe must first be created before using AssignLeaflets:

import MDAnalysis as mda
from lipyphilic.lib.assign_leaflets import AssignLeaflets

u = mda.Universe(tpr, trajectory)





If we have used the MARTINI forcefield to study a phospholipid/cholesterol mixture,
we can assign lipids and cholesterol to the upper and lower as follows:

leaflets = AssignLeaflets(
  universe=u,
  lipid_sel="name GL1 GL2 ROH"
)





We then select which frames of the trajectory to analyse (None will use every
frame) and choose to display a progress bar (verbose=True):

leaflets.run(
  start=None,
  stop=None,
  step=None,
  verbose=True
)





The results are then available in the leaflets.leaflets attribute as a
numpy.ndarray. Each row corresponds to an individual lipid and each column
to an individual frame, i.e leaflets.leaflets[i, j] contains the leaflet
membership of lipid i at frame j. Lipid i, at frame j, is in the upper
leaflet if leaflets.leaflets[i, j]==1 and in the lower leaflet if
leaflets.leaflets[i, j]==-1.



Allowing lipids in the midplane

The above example will assign every lipid (including sterols) to either the upper
or lower leaflet. To allow cholesterol to be in the midplane, we can provide
a midplane_sel and midplane_cutoff to AssignLeaflets:

leaflets = AssignLeaflets(
  universe=u,
  lipid_sel="name GL1 GL2 ROH",
  midplane_sel="resname CHOL and name ROH C2",
  midplane_cutoff=12.0
)





A cholesterol molecule that has both its ROH and C2 atoms within 12 Å of
membrane midpoint will be assigned to the midplane, i.e. for cholesterol i
at frame j that is in the midplane, leaflets.leaflets[i, j]==0.



Changing the resolution of the membrane grid

The first two examples compute a global membrane midpoint based on all the atoms
of the lipids in the membrane. Lipids are then assigned a leaflet based on their distance
in \(z\) to this midpoint. This is okay for planar bilayers, but can lead to incorrect
leaflet classification in membranes with undulations. If your bilayer has undulations,
AssignLeaflets can account for this by creating a grid in \(xy\)
of your membrane, calculating the local membrane midpoint in each patch,
then assigning leaflet membership based on distance in \(z\) to the local membrane
midpoint. This is done through use of n_bins:

leaflets = AssignLeaflets(
  universe=u,
  lipid_sel="name GL1 GL2 ROH",
  midplane_sel="resname CHOL and name ROH C2",
  midplane_cutoff=12.0,
  n_bins=10
)





In this example, the membrane will be split into a 10 x 10 grid and a lipid
assigned a leaflet based on the distance to the midpoint of the patch the lipid
is in.




Assigning leaflets in membranes with high curvature

If your membrane is a vesicle or bilayer with very large undulations, such as in a
buckled membrane [https://aip.scitation.org/doi/pdf/10.1063/1.4808077],
lipyphilic.lib.assign_leaflets.AssignLeaflets will assign lipids to the wrong
leaflet

The class lipyphilic.lib.assign_leaflets.AssignCurvedLeaflets can be used in these
scenaries to assign each lipid to a leaflet using MDAnalysis’ Leaflet Finder [https://docs.mdanalysis.org/1.0.0/documentation_pages/analysis/leaflet.html].
Lipids may still be assigned to the upper/outer leaflet (indicated by 1), the lower/inner leaflet
(-1) or the membrane midplane (0).


Input


	Required:
	
	universe : an MDAnalysis Universe object


	lipid_sel : atom selection for all lipids in the bilayer, including e.g. sterols


	lf_cutoff : distance cutoff below which two neighbouring atoms will be considered to be in the same leaflet.






	Options:
	
	midplane_sel : atom selection for lipid that may occupy the midplane


	midplane_cutoff : atoms further than this distance from the either leaflet are considered to be the midplane


	pbc : bool, specifying whether or not to take periodic boundaries into account










Output



	leaflets : leaflet to which each lipid is assigned at each frame







Leaflet data are returned in a numpy.ndarray, where each row corresponds
to an individual lipid and each column corresponds to an individual frame, i.e.
leaflets[i, j] refers to the leaflet of lipid i at frame j. The results are
accessible via the AssignLeaflets.leaflets attribute.



Example usage of AssignCurvedLeaflets

An MDAnalysis Universe must first be created before using AssignCurvedLeaflets:

import MDAnalysis as mda
from lipyphilic.lib.assign_leaflets import AssignLeaflets

u = mda.Universe(tpr, trajectory)





If we have used the MARTINI forcefield to study a phospholipid/cholesterol mixture,
we can assign lipids and cholesterol to the upper and lower as follows:

leaflets = AssignCurvedLeaflets(
  universe=u,
  lipid_sel="name GL1 GL2 ROH",
  lf_cutoff=12.0,
  midplane_sel="name ROH",
  midplane_cutoff=10.0
)





We then select which frames of the trajectory to analyse (None will use every
frame) and choose to display a progress bar (verbose=True):

leaflets.run(
  start=None,
  stop=None,
  step=None,
  verbose=True
)





This will first use MDAnalysis’ Leaflet Finder [https://docs.mdanalysis.org/1.0.0/documentation_pages/analysis/leaflet.html] to assign
all lipids, excluding those in midplane_sel, to either the upper or lower leaflet. The
LeafletFinder will consider two lipids to be in the same leaflet if they have GL1 or
GL2 atoms within \(12\) Å of one another. From this, we find the two largest leaflets,
then assign the remaining phospholipids to a leaflet based on whichever leaflet they are closest
to.

The phospholipids do not change leaflets throughtout the trajectory, only cholesterol — as specified
with midplane_sel and midplane_cutoff. Thus, at each frame, each cholesterol is
assinged a leaflet based on it’s minimum distance to the leaflet. In the above example, if a cholesterol
is within \(10\) Å of one leaflet it is assigned to that leaflet. If it is within \(10\) Å of
neither or both leaflets then it is assigned to the midplane.

The results are then available in the leaflets.leaflets attribute as a
numpy.ndarray. Each row corresponds to an individual lipid and each column
to an individual frame, i.e leaflets.leaflets[i, j] contains the leaflet
membership of lipid i at frame j. Lipid i, at frame j, is in the upper
leaflet if leaflets.leaflets[i, j]==1 and in the lower leaflet if
leaflets.leaflets[i, j]==-1.




The classes and their methods


	
class lipyphilic.lib.assign_leaflets.AssignLeaflets(universe, lipid_sel, midplane_sel=None, midplane_cutoff=None, n_bins=1)

	Assign lipids in a bilayer to the upper leaflet, lower leaflet, or midplane.

Set up parameters for assigning lipids to a leaflet.


	Parameters

	
	universe (Universe) – MDAnalysis Universe object


	lipid_sel (str) – Selection string for the lipids in a membrane. The selection
should cover all residues in the membrane, including cholesterol.


	midplane_sel (str, optional) – Selection string for residues that may be midplane. Any residues not
in this selection will be assigned to a leaflet regardless of its
proximity to the midplane.
The default is None, in which case all lipids will be assigned to
either the upper or lower leaflet.


	midplane_cutoff (float, optional) – Minimum distance in z an atom must be from the midplane to be assigned
to a leaflet rather than the midplane. The default is 0, in which case
all lipids will be assigned to either the upper or lower leaflet. Must
be non-negative.


	n_bins (int, optional) – Number of bins in x and y to use to create a grid of membrane patches.
Local membrane midpoints are computed for each patch, and lipids assigned
a leaflet based on the distance to their local membrane midpoint. The
default is 1, which is equivalent to computing a single global
midpoint.









Note

Typically, midplane_sel should select only sterols. Other lipids have
flip-flop rates that are currently unaccessible with MD simulations, and thus
should always occupy either the upper or lower leaflet.








	
class lipyphilic.lib.assign_leaflets.AssignCurvedLeaflets(universe, lipid_sel, lf_cutoff=15, midplane_sel=None, midplane_cutoff=None, pbc=True)

	Assign lipids in a membrane to the upper leaflet, lower leaflet, or midplane.

Set up parameters for assigning lipids to a leaflet.


	Parameters

	
	universe (Universe) – MDAnalysis Universe object


	lipid_sel (str) – Selection string for the lipids in a membrane. The selection
should cover all residues in the membrane, including cholesterol.


	lf_cutoff (float, optional) – Cutoff to pass to MDAnalysis.analysis.leaflet.LeafletFinder. Lipids closer
than this cutoff distance apart will be considered to be in the same leaflet.
The default is 15.0


	midplane_sel (str, optional) – Selection string for residues that may be midplane. Any residues not
in this selection will be assigned to a leaflet at ever frame.
The default is None, in which case no molecules will be considered to be
in the midplane.


	midplane_cutoff (float, optional) – Lipids with atoms selected in midplane_sel that are within this distance of
a leaflet will be to that leaflet. If a molecule is within this distance of
neither or both leaflets, it will be assigned to the midplane. The default
is None.


	pbc (bool, optional) – Take periodic boundary conditions into account. The default is True.









Note

Typically, midplane_sel should select only sterols. Other lipids have
flip-flop rates that are currently unaccessible with MD simulations, and thus
should always occupy either the upper or lower leaflet.




	
filter_leaflets(lipid_sel=None, start=None, stop=None, step=None)

	Create a subset of the leaflets results array.

Filter either by lipid species or by the trajectory frames, or both.


	Parameters

	
	lipid_sel (str, optional) – MDAnalysis selection string that will be used to select a subset of lipids present
in the leaflets results array. The default is None, in which case data for all lipids
will be returned.


	start (int, optional) – Start frame for filtering. The default is None, in which case the first frame is used
as the start.


	stop (int, optional) – Stop frame for filtering. The default is None, in which case the final frame is used
as the stop.


	step (int, optional) – Number of frames to skip when filtering frames. The deafult is None, in which case
all frames between start and stop are used.




















            

          

      

      

    

  

    
      
          
            
  
Flip-flop — lipyphilic.lib.flip_flop


	Author

	Paul Smith



	Year

	2021



	Copyright

	GNU Public License v2





This module provides methods for finding flip-flop events in a lipid bilayer.

A flip-flop event occurs when a molecule - typically a sterol - moves from
one leaflet of a bilayer into the opposing leaflet.

The class lipyphilic.lib.flip_flop.FlipFlop finds the frames at which
a flip-flop event begins and ends, as well as the direction of travel (upper-to-lower
or lower-to-upper). FlipFlop can also determine whether each event was
successful (the molecule resides in the opposing leaflet for at least a given
length of time), or not (the molecule went to the midplane but returned to its
original leaflet).

See Baral et al. (2020) [https://www.sciencedirect.com/science/article/pii/S0009308420300980]
for further discussion on flip-flop in lipid bilayers, including the affect on the flip-flop
rate of the buffer size used to assign molecules to the midplane of the bilayer.


Input


	Required:
	
	universe : an MDAnalysis Universe object.


	lipid_sel : atom selection for atoms to use in detecting flip-flop


	leaflets : leaflet membership (-1: lower leaflet, 0: midplane, 1: upper leaflet) of each lipid in the membrane at each frame










Output



	resindex : residue index of a flip-flopping molecule


	flip_flop_start_frame : final frame at which the molecule was present in its original leaflet


	flip_flop_end_frame : first frame at which the molecule is present in the new leaflet


	moves_to : direction of travel of the molecule: equal to 1 if the upper leaflet is the new lealet, equal to -1 if the lower leaflet is the new leaflet







Flip-flop data area returned in a numpy.ndarray, on a “one line, one observation” basis
and can be accessed via FlipFlop.flip_flops:

flip_flops = [
    [
        <resindex (0-based)>,
        <end_frame (0-based)>,
        <start_frame (0-based)>,
        <moves_to>
    ],
    ...
]





moves_to is equal to 1 or -1 if the molecule flip-flops into the upper or the
lower leaflet, respectively.

Additionaly, the success or failure of each flip-flop event is stored in the
attribute FlipFlop.flip_flop_success.



Example usage of FlipFlop

An MDAnalysis Universe must first be created before using FlipFlop:

import MDAnalysis as mda
from lipyphilic.lib.assign_leaflets import AssignLeaflets
from lipyphilic.lib.flip_flop import FlipFlop

u = mda.Universe(tpr, trajectory)





Then we need to know which leaflet each lipid is in at each frame. This may be done using
lipyphilic.lib.assign_leaflets.AssignLeaflets:

leaflets = AssignLeaflets(
  universe=u,
  lipid_sel="name GL1 GL2 ROH"  # assuming we are using the MARTINI forcefield
  midplane_sel="name ROH",       # only cholesterol is allowed to flip-flop
  midplane_cutoff=8.0,          # buffer size for assigning molecules to the midplane
)
leaflets.run()





The leaflet data are stored in the leaflets.leaflets attribute. We can now create our
FlipFlop object:

flip_flop = FlipFlop(
  universe=u,
  lipid_sel="name ROH",
  leaflets=leaflets.filter_leaflets("name ROH")  # pass only the relevant leaflet data
)





We then select which frames of the trajectory to analyse (None will use every
frame):

flip_flop.run(
  start=None,
  stop=None,
  step=None
)





The results are then available in the flipflop.flip_flop attribute as a
numpy.ndarray. Each row corresponds to an individual flip-flop event, and
the four columns correspond, respectively, to the molecule resindex,
flip-flop start frame, flip-flop end frame, and the leaflet in which the molecule
resides after the flip-flop.


Specify minimum residence time for successful flip-flops

We can also specify the minumum number of frames a molecule must reside in its new leaflet
for the flip-flop to be considered successful. We do this using the frame_cutoff
parameter:

flip_flop = FlipFlop(
  universe=u,
  lipid_sel="name ROH",
  leaflets=leaflets.filter_leaflets("name ROH")
  frame_cuotff=10,
)





With frame_cutoff=10, a molecule must remain in its new leaflet for at least 10
consecutive frames for the flip-flop to be considered successful. If this condition is not met,
the flip-flop event is recorded as failing.



Calculating the flip-flop rate

The flip-flop rate can be calculatd directly from the number of successfull flip-flop evetns,
which itself can be calculated as:

n_successful = sum(flip_flop.flip_flop_success == "Success")





The rate is then given by the total number of successful flip-flops divided by the total
simulations time and the number of molecules of the translocating species.




The class and its methods


	
class lipyphilic.lib.flip_flop.FlipFlop(universe, lipid_sel, leaflets, frame_cutoff=1)

	Find flip-flop events in a lipid bilayer.

Set up parameters for finding flip-flop events.


	Parameters

	
	universe (Universe) – MDAnalysis Universe object


	lipid_sel (str) – Selection string for atoms to use in detecting flip-flop.


	leaflets (numpy.ndarray (n_lipids,, n_frames)) – An array of leaflet membership for each lipid as each frame, in which: -1
corresponds to the lower leaflet; 1 corresponds to the upper leaflet; and
0 corresponds to the midplane.


	frame_cutoff (int, optional) – To be counted as a successful flip-flop, a molecule must reside in its new
leaflet for at least ‘frame_cutoff’ consecutive frames. The default is 1, in
which case the molecule only needs to move to the opposing leaflet for a single
frame for the flip-flop to be successful.









Tip

Leaflet membership can be determined using lipyphilic.lib.assign_leaflets.AssignLeaflets.











            

          

      

      

    

  

    
      
          
            
  
Registration — lipyphilic.lib.registration


	Author

	Paul Smith



	Year

	2021



	Copyright

	GNU Public License v2





This module provides methods for determining registration of leaflets in a bilayer.

The degree of registration is calculated as the pearson correlation coefficient of
densities in the upper and lower leaflets. First, the 2D density of each leaflet,
\(L\), is calculated:


\[\rho(x, y)_{L} = \displaystyle \int\limits_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp \Bigg({-}\frac{1}{2} \bigg(\frac{x' - x}{\sigma} \bigg)^2 \Bigg) \,dx' dy'\]

where the \((x, y)\) positions of lipid atoms in leaflet \(L\) are binned
into two-dimensional histograms, then convolved with a circular Gaussian density
of standard deviation \(\sigma\). \(L\) is either the upper (\(u\)) or
lower (\(l\)) leaflet.

The correlation between the two leaflets, \(r_{u/l}\), is then calculated as
the pearson correlation coefficient between \(\rho(x, y)_{u}\) and
\(\rho(x, y)_{l}\), where values of:


	\(1\) correspond to perfectly registered


	\(-1\) correspond to perfectly anti-registered




For more information on interleaflet registration in bilayers
see Thallmair et al. (2018) [https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b01877].


Input


	Required:
	
	universe : an MDAnalysis Universe object.


	upper_sel : atom selection for lipids in the upper leaflet to use in the registration calculation


	lower_sel : atom selection for lipids in the lower leaflet to use in the registration calculation


	leaflets : leaflet membership (-1: lower leaflet, 0: midplane, 1: upper leaflet) of each lipid in the membrane.






	Optional:
	
	filter_by : boolean mask for determining which lipids to include in the registration calculation


	n_bins : the number of bins to use in x and y for the 2D histogram


	gaussian_sd : the standard deviation of the circular Gaussian to convole with the grid densities










Output



	registration : the degree of interleaglet registration at each frame







The data are stored in the registration.registration attribute, containing the pearson
correlation coefficient of the two-dimensional leaflet densities at each frame.



Example usage of Registration

An MDAnalysis Universe must first be created before using Registration:

import MDAnalysis as mda
from lipyphilic.lib.registration import Registration

u = mda.Universe(tpr, trajectory)





Then we need to know which leaflet each lipid is in at each frame. This may be done using
lipyphilic.lib.assign_leaflets.AssignLeaflets:

leaflets = AssignLeaflets(
  universe=u,
  lipid_sel="name GL1 GL2 ROH" # assuming we are using the MARTINI forcefield
)
leaflets.run()





The leaflets data are stored in the leaflets.leaflets attribute. We can now create our
Registration object by passing our lipyphilic.lib.assign_leaflets.AssignLeaflets
object to Registration along with atom selections for the lipids:

registration = Registration(
  upper_sel="resname CHOL and name ROH",
  lower_sel="resname CHOL and name ROH",
  leaflets=leaflets.filter_leaflets("resname CHOL and name ROH")
)





To calculate the interleaflet correlation of cholesterol molecules using their ROH
beads we then need to use the run() method. We select which frames of the trajectory
to analyse (None will use every frame) and choose to display a progress bar (verbose=True):

registration.run(
  start=None,
  stop=None,
  step=None,
  verbose=True
)





The results are then available in the registration.registration attribute as a
numpy.ndarray. Again, \(1\) corresponds to the leaflets being perfectly in register
and \(-1\) corresponds to the leaflets being perfectly anti-registered.


Selecting a subset of lipids for the registration analysis

The previous example will compute the registration of cholesterol across the upper
and lower leaflets. In, for example, simulations of phase-separation domains, it is useful
to know the registration of liquid-ordered domains (regardless of the species in the domain)
rather than the registrtion of specific lipid species.

If we have a 2D array, ‘lipid_order_data’, that contains information on whether each lipid is in
the liquid-disordered phase or the liquid-ordered phase at each frame, we can used this to
calculate the registration of ordered domains. The array must take the shape
‘(n_residues, n_frames)’, and in the below example ‘lipid_order_data[i, j]’ would be equal to -1
if lipid ‘i’ is liquid-disordered at frame ‘j’ and equal to 1 if it is liquid-ordered:

registration = Registration(
  upper_sel="name PO4 ROH",
  lower_sel="name PO4 ROH",
  leaflets=leaflets.leaflets,
  filter_by=lipid_order_data == 1
)





If we have a ternary mixture of DPPC/DOPC/Cholesterol, we can also specifcy that we wish to
consider only DPPC and cholesterol in the liquid-ordered phase:

registration = Registration(
  upper_sel="(resname CHOL and name ROH) or (resname DPPC and name PO4)",
  lower_sel="(resname CHOL and name ROH) or (resname DPPC and name PO4)",
  leaflets=leaflets.filter_leaflets("resname CHOL DPPC"),
  filter_by=lipid_order_data == 1
)







Changing the resolution of the 2D grid

By default, the lipid positions of each leaflet are binned into a two-dimensional
histogram using \(n\_bins_x = \lceil{x}\rceil\), where \(n\_bins_x\) is the
numer of bins in \(x\) and \(\lceil{x}\rceil\) is the size of system in \(x\)
rounded up to the nearest integer. This gives a grid resolution of  1 Å.

It is also possible to specify the number of bins to use for binning the data:

registration = Registration(
  upper_sel="resname CHOL and name ROH",
  lower_sel="resname CHOL and name ROH",
  leaflets=leaflets.filter_leaflets("resname CHOL"),
  n_bins=100
)





This will use 100 bins for creating the two-dimensional histogram. Fewer bins
will result in a performance increase but at the cost of spatial resolution. For
all but the largest systems, the default of 1 Å is appropriate. If your system
is larger than a few hundred nm in one dimension, you will likely want to set
n_bins to 2000 or less.



Changing the standard deviation of the circular Gaussian density

The defualt value of \(\sigma\) is 15, which is the value used by
Thallmair et al. (2018) [https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b01877]
for determining interleaflet cholesterol correlations. This deault value can be
changed using the gaussian_sd parameter:

registration = Registration(
  upper_sel="resname CHOL and name ROH",
  lower_sel="resname CHOL and name ROH",
  leaflets=leaflets.filter_leaflets("resname CHOL"),
  gaussian_sd=12
)





Figure 2d of Thallmair et al. (2018) [https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b01877] shows how correlation
tends to increase with increasing gaussian_sd. This is because the density of
atomic positions is more diffuse and thus more likely to overlap between the two
leaflets. Increasing gaussian_sd also incurs a performance cost.




The class and its methods


	
class lipyphilic.lib.registration.Registration(universe, upper_sel, lower_sel, leaflets, filter_by=None, n_bins=None, gaussian_sd=15)

	Calculate interleaflet registration in a bilayer.

Set up parameters for the registration calculation.


	Parameters

	
	universe (Universe) – MDAnalysis Universe object


	upper_sel (str) – Selection string for lipids in the upper leaflet of the bilayer to be used
for determining registration.


	lower_sel (str) – Selection string for lipids in the lower leaflet of the bilayer to be used
for determining registration.


	leaflets (numpy.ndarray) – An array of leaflet membership in which: -1 corresponds to the lower leaflet;
1 corresponds to the upper leaflet; and 0 corresponds to the midplane.
If the array is 1D and of shape (n_lipids), each lipid is taken to
remain in the same leaflet over the trajectory. If the array is 2D and
of shape (n_lipids, n_frames), the leaflet to which each lipid is
assisgned at each frame will be taken into account when calculating
the area per lipid.


	filter_by (numpy.ndarray, optional) – A boolean array indicating whether or not to include each lipid in the registration
analysis. If the array is 1D and of shape (n_lipids), the same lipids will be used
in the registration analysis at every frame. If the array is 2D and of shape
(n_lipids, n_frames), the boolean value of each lipid at each frame will be
taken into account. The default is None, in which case no filtering is
performed.


	n_bins (int, optional) – The number of bins to use in each dimension for the two-dimensional density
calculations. The default is None, in which case the number of bins will be given
by the size of the system in the ‘x’ dimension rounded up to the nearest integer.


	gaussian_sd (float, optional) – The standard deviation of the circular Gaussian density to convolve with the
two-dimensional densities. The spreads out the data to better represent the
size of the lipids. The default is 15.
















            

          

      

      

    

  

    
      
          
            
  
Neighbours — lipyphilic.lib.neighbours


	Author

	Paul Smith



	Year

	2021



	Copyright

	GNU Public License v2





This module provides methods for finding neighbouring lipids in a bilayer,
calculating local lipid compositions and lipid enrichment, and finding the
largest cluster of specific species of lipids over time.

Two lipids are considered neighbours if they have any atoms within a given
cutoff distance of one another.


Input


	Required:
	
	universe : an MDAnalysis Universe object.


	lipid_sel : atom selection for lipids in the bilayer






	Optional:
	
	cutoff : lipids are considered to be neighbouring if they have at least one pair of atoms less than this distance apart (in Å)










Output



	neighbours : a sparse matrix of binary variables, equal to 1 if two lipids are in contact, and 0 otherwise







For efficient use of memory, an adjacency matrix of neighbouring lipids is stored
in a scipy.sparse.csr_matrix sparse matrix for each frame of the analysis. The data
are stored in the neighbours.neighbours attribute as a NumPy array of sparse
matrices. Each matrix has shape (n_residues, n_residues)


Tip

The resultant sparse matrix can be used to calculate the local lipid composition of each individual lipid
at each frame using lipyphilic.lib.neighbours.count_neighbours(), or to find the largest cluster of
lipids at each frame using lipyphilic.lib.neighbours.largest_cluster().





Example usage of Neighbours

An MDAnalysis Universe must first be created before using Neighbours:

import MDAnalysis as mda
from lipyphilic.lib.neighbours import Neighbours

u = mda.Universe(tpr, trajectory)





We can now create our Neighbours object:

neighbours = Neighbours(
  universe=u,
  lipid_sel="name GL1 GL2 ROH",  # assuming we're using the MARTINI forcefield
  cutoff=12.0
)





A lipid will be considered to be neighbouring a cholesterol molecule if either its GL1 or GL2 bead
is within 12 Å of the ROH bead of the cholesterol. For neighbouring lipids, the distances
between there respective GL1 and “GL2* beads will be considered.

We then select which frames of the trajectory to analyse (None will use every
frame) and select to display a progress bar (verbose=True):

neighbours.run(
  start=None,
  stop=None,
  step=None,
  verbose=True
)





The results are then available in the neighbours.Neighbours attribute as a
numpy.ndarray of Compressed Sparse Row matrices.


Counting the number of neighbours: by lipid species

In order to compute the number of each lipid species around each lipid at each frame,
after generating the neighbour matrix we can use the count_neighbours()
method:

counts = neighbours.count_neighbours()





Counts is a pandas.DataFrame in which each row contains the following
information (if there are N distinct species in the membrane):

[
    <lipid identifier>,  # by default, the lipid resname
    <lipid resindex>,
    <frame>,
    <num species_1 neighbours>,
    ...
    <num species_N neighbours>,
    <total num neighbours>
]







Counting the number of neighbours: by user-defined labels

Instead of using the lipid resname to identify neighbouring lipids, any ordinal data may
be used for counting lipid neighbours. This is done through use of the count_by and
count_by_labels parameters:

counts = neighbours.count_neighbours(
  count_by=lipid_order_data,
  count_by_labels={'Ld': 0, 'Lo': 1}
)





Here we assume that ‘lipid_order_data’ contains information on whether each lipid is in
the liquid-disordered phase or the liquid-ordered phase at each frame. It must take
the shape ‘(n_residues, n_frames)’, and in this example ‘lipid_order_data[i, j]’ would
be equal to ‘0’ if lipid ‘i’ is liquid-disordered at frame ‘j’ and equal to ‘1’ if it is
liquid-ordered. ‘count_by_labels’ is used to signify that the value ‘0’ corresponds to
the liquid-disordered (Ld) phase and the value ‘1’ to the liquid-ordered  (Lo) phase. In
this example, the returned pandas.DataFrame would contain the following information
in each row:

[
    <Ld or Lo>,
    <lipid resindex>,
    <frame>,
    <num Ld neighbours>,
    <num Lo neighbours>,
    <total num neighbours>
]







Calculate the enrichment index of lipid species

The count_neighbours() method will, by default, return the number of neighbouring lipids
around each individual lipid.

However, a clearer picture of aggregation of certain lipid species can
be gained by instead considering the enrichment/depletion index of each lipid species, defined in
Ingólfsson et al. (2014) [https://pubs.acs.org/doi/10.1021/ja507832e]. In this
instance, the number of each neighbour species B around a given reference species A is normalized
by the average number of species B around any lipid.

To calculate the enrichment/depletion index of each species at each frame, as well as the raw
neighbour counts, we can set the return_enrichment keyword to true:

counts, enrichment = neighbours.count_neighbours(return_enrichment=True)





This will return two pandas DataFrames, one containing the neighbour counts
and the other the enrichment/depletion index of each species at each frame. The benefit of having
the enrichment index at each frame is that you can plot its time-evolution to see whether
particular species form aggregates over time.



Find the largest cluster

To find the largest cluster of a set of lipid species we can use the largest_cluster()
method:

largest_cluster = neighbours.largest_cluster(
  cluster_sel="resname CHOL DPPC"
)





The results are returned in a numpy.ndarray and contain the number of lipids in the largest
cluster at each frame.



Find the largest cluster in a given leaflet

The previous example will compute the largest cluster formed by cholesterol and DPPC molecules at each
frame. In large coarse-grained systems where there is substantial flip-flop of sterols, this cluster may
span both leaflets. In order to find the largest cluster at each frame within a given leaflet, we can
tell largest_cluster() to consider only lipids in the upper leaflet by using the
filter_by parameter.

First, though, we need to know which leaflet each lipid is in at each frame. This may be done using
lipyphilic.lib.assign_leaflets.AssignLeaflets:

leaflets = AssignLeaflets(
  universe=u,
  lipid_sel="name GL1 GL2 ROH"  # pass the same selection that was passed to Neighbours
)
leaflets.run()  # run the analysis on the same frames as Neighbours.run()





The leaflets data are stored in the leaflets.leaflets attribute, will be equal to ‘1’ if the
lipid is in the upper leaflet at a given frame and equal to ‘-1’ if it is in the lower leaflet. See
lipyphilic.lib.assign_leaflets.AssignLeaflets for more information. We can now find the
largest cluster over time in the upper (1) leaflet.

The filter_by parameter takes as input a 2D numpy.ndarray of shape
(n_residues, n_frames). The array should be a boolean mask [https://docs.scipy.org/doc/numpy-1.15.0/user/basics.indexing.html#boolean-or-mask-index-arrays],
where True indicates that we should include this lipid in the neighbour calculation:

upper_leaflet_mask = leaflet.leaflets == 1

largest_cluster_upper_leaflet = neighbours.largest_cluster(
  cluster_sel="resname CHOL DPPC",
  filter_by=upper_leaflet_mask
)





Now, lipids either in the lower leaflet (-1) or the midplane (0) will not be included when determining
the largest cluster.



Get residue indices of lipids in the largest cluster

If we want to know not just the cluster size but also which lipids are in the largest cluster at each
frame, we can set the return_indices parameter to True:

largest_cluster, largest_cluster_indices = neighbours.largest_cluster(
  cluster_sel="resname CHOL DPPC",
  return_indices=True
)





The residue indices will be returned as list of numpy.ndarray arrays - one per frame of the analysis. Each
array contains the residue indices of the lipids in the largest cluster at that frame




The class and its methods


	
class lipyphilic.lib.neighbours.Neighbours(universe, lipid_sel, cutoff=10.0)

	Find neighbouring lipids in a bilayer.

Set up parameters for finding neighbouring lipids.


	Parameters

	
	universe (Universe) – MDAnalysis Universe object


	lipid_sel (str) – Selection string for lipids in the bilayer.


	cutoff (float, optional) – To be considered neighbours, two lipids must have at least one pair of atoms within
this cutoff distance (in Å). The default is 10.0.









	
count_neighbours(count_by=None, count_by_labels=None, return_enrichment=False)

	Count the number of each neighbour type at each frame.


	Parameters

	
	count_by (numpy.ndarray, optional) – An array containing ordinal data describing each lipid at each frame. For example,
it may be an array containing information on the ordered state or each lipid.
Defaults to None, in which case the lipid species (resnames) are used for counting neighbours.


	count_by_labels (dict, optional) – A dictionary of labels describing what each unique value in count_by refers to, e.g
if count_by contains information on the ordered state of each lipid at each frame, whereby
0 corresponds to disordered and 1 corresponds to ordered, then
count_by_labels = {‘Ld’: 0, ‘Lo’: 1}. There must be precisely one label for each unique
value in ‘count_by’. If count_by is given but count_by_labels is left as None, the values
in count_by will be used as the labels.


	return_enrichment (bool, optional) – If True, a second DataFrame containing the fractional enrichment of each lipid species at each
frame is also returned. The default is False, in which case the fractional enrichment
if not returned.






	Returns

	
	counts (pandas.DataFrame) – A DataFrame containing the following data for each lipid at each frame: lipid identifier
(default is resname), lipid residue index, frame number, number of neighbours of each species
(or of each type in ‘count_by’ if this is provided), as well as the total number of neighbours.


	enrichment (pandas.DataFrame) – A DataFrame containing the following data enrichment/depletion data for each lipid species at
each frame.















	
largest_cluster(cluster_sel=None, filter_by=None, return_indices=False)

	Find the largest cluster of lipids at each frame.


	Parameters

	
	cluster_sel (str, optional) – Selection string for lipids to include in the cluster analysis. The default is None, in
which case all lipid used in identiying neighbouring lipids will be used for finding
the largest cluster.


	filter_by (numpy.ndarray, optional) – A boolean array indicating whether or not to include each lipid in the cluster analysis. If
the array is 1D and of shape (n_lipids), the same lipids will be used in the cluster
analysis at every frame. If the array is 2D and of shape (n_lipids, n_frames), the boolean
value of each lipid at each frame will be taken into account. The default is None, in which
case all lipids used in identiying neighbours will be used for finding
the largest cluster.


	return_indices (bool, optional) – If True, a list of NumPy arrays will also be returned, on for each frame. Each NumPy array
will contain the residue indices of the lipids in the largest cluster at that frame. Note, if
there are two largest clusters of equal size, only the residue indices of lipids in one
cluster will be returned (the cluster that has the lipid with the smallest residue index). The
default is False, in which case no reidue indices are returned.






	Returns

	
	largest_cluster (numpy.ndarray) – An array containing the number of lipids in the largest cluster at each frame.


	indices (list) – A list of 1D NumPy arrays, where each array corresponds to a single frame and contains the
residue indices of lipids in the largest cluster at that frame.











Note

Neighbours must be found by using Neighbours.run() before calling either
Neighbours.count_neighbours() or Neighbours.largest_cluster().















            

          

      

      

    

  

    
      
          
            
  
Area per lipid — lipyphilic.lib.area_per_lipid


	Author

	Paul Smith



	Year

	2021



	Copyright

	GNU Public License v2





This module provides methods for calculating the area per lipid in a bilayer.

The class lipyphilic.lib.area_per_lipid.AreaPerLipid calculates the
area of each lipid via a 2D Voronoi tessellation of atomic positions. See
Lukat et al. (2013) [https://pubs.acs.org/doi/full/10.1021/ci400172g] for
a description of calculating the area per lipid via Voronoi tessellations.

This class uses Freud [https://freud.readthedocs.io/en/stable/index.html#]
for performing the Voronoi tessellations from which the area per lipid is
calculated.


Input


	Required:
	
	universe : an MDAnalysis Universe object.


	lipid_sel : atom selection for lipids in the bilayer. These atoms will be used to perform the Voronoi tessellation.


	leaflets : leaflet membership (-1: lower leaflet, 0: midplane, 1: upper leaflet) of each lipid in the membrane.










Output



	area : area per lipid of each lipid as each frame







Area data are returned in a numpy.ndarray, where each row corresponds
to an individual lipid and each column corresponds to an individual frame, i.e.
areas[i, j] refers to the area of lipid i at frame j. The results are
accessible via the AreaPerLipid.areas attribute.


Note

No area can be calculated for molecules that are in the midplane,
i.e. those for which leaflets==0. These molecules will have NaN values
in the results array for the frames at which they are in the midplane.





Example usage of AreaPerLipid

An MDAnalysis Universe must first be created before using AreaPerLipid:

import MDAnalysis as mda
from lipyphilic.lib.assign_leaflets import AssignLeaflets

u = mda.Universe(tpr, trajectory)





Then we need to know which leaflet each lipid is in at each frame. This may be done using
lipyphilic.lib.assign_leaflets.AssignLeaflets:

leaflets = AssignLeaflets(
  universe=u,
  lipid_sel="name GL1 GL2 ROH" # assuming we are using the MARTINI forcefield
)
leaflets.run()





The leaflet data are stored in the leaflets.leaflets attribute. We can now create our
AreaPerLipid object:

areas = AreaPerLipid(
  universe=u,
  lipid_sel="name GL1 GL2 ROH",
  leaflets=leaflets.leaflets
)





The above will use GL1 and GL2 beads to calculate the area of each phospholipid, and the
ROH bead to calculate the area of each sterol. Two Voronoi tessellations will be performed at each
frame — one for the upper leaflet and one for the lower leaflet.

We then select which frames of the trajectory to analyse (None will use every
frame) and choose to display a progress bar (verbose=True):

areas.run(
  start=None,
  stop=None,
  step=None,
  verbose=True
)





The results are then available in the areas.areas attribute as a
numpy.ndarray. Each row corresponds to an individual lipid and each column
to an individual frame, i.e areas.areas[i, j] contains the area of lipid i
at frame j.


Warning

If your membrane is highly curved the calculated area per lipid will be inaccurate.
In this case we recommend you use either FATSlim [https://pythonhosted.org/fatslim/],
MemSurfer [https://github.com/LLNL/MemSurfer] or
ML-LPA [https://vivien-walter.github.io/mllpa/].





The class and its methods


	
class lipyphilic.lib.area_per_lipid.AreaPerLipid(universe, lipid_sel, leaflets)

	Calculate the area of lipids in each leaflet of a bilayer.

Set up parameters for calculating areas.


	Parameters

	
	universe (Universe) – MDAnalysis Universe object


	lipid_sel (str) – Selection string for lipids in the bilayer. Typically, in all-atom
simulations, one atom per sterol and three atoms per non-sterol lipid
would be used. In coarse-grained simulations, one bead per sterol and
two beads per non-sterol lipid would typically be used.


	leaflets (numpy.ndarray (n_lipids,)) – An array of leaflet membership in which: -1 corresponds to the lower leaflet;
1 corresponds to the upper leaflet; and 0 corresponds to the midplane.
If the array is 1D and of shape (n_lipids), each lipid is taken to
remain in the same leaflet over the trajectory. If the array is 2D and
of shape (n_lipids, n_frames), the leaflet to which each lipid is
assisgned at each frame will be taken into account when calculating
the area per lipid.









Tip

Leaflet membership can be determined using lipyphilic.lib.assign_leaflets.AssignLeaflets.




	
project_area(lipid_sel=None, start=None, stop=None, step=None, filter_by=None, bins=None, ax=None, cmap=None, vmin=None, vmax=None, cbar=True, cbar_kws={}, imshow_kws={})

	Project the area per lipid onto the xy plane of the membrane.

The areas per lipid, averaged over a selected range of frames, are projected onto the xy
plane based on the center of mass of each lipid. The atoms to be used in calculating
the center of mass of the lipids can be specified using the lipid_sel arugment.

This method creates an instance of lipyphilic.lib.plotting.ProjectionPlot with
the projected areas interpolated across periodic boundaries.
The plot is returned so further modification can be performed if needed.


Note

The lipid positions are taken from the middle frame of the selected range.




	Parameters

	
	lipid_sel (MDAnalysis atom selection, optional) – The center of mass of each lipid will be determined via this selection.
The default is None, in which case every atom of a lipid is used to
determine its center of mass.


	start (int, optional) – Start frame for averaging the area per lipid results.


	stop (int, optional) – Final frame for averaging the area per lipid results.


	step (int, optional) – Number of frames to skip


	filter_by (array-like, optional) – A Boolean mask for selecting a subset of lipids.
It may take the following shapes:

(n_lipids)
The mask is used to select a subset of lipids for projecting the areas
onto the membrane plane.

(n_lipids, n_frames)
This is the same shape as the NumPy array created by the
lipyphilic.lib.AreaPerLipid.run() method. Boolean values are used only from the column
corresponding to the middle frame of the range selected by start, stop, and
step.

The default is None, in which case no filtering is applied.



	bins (int or array_like or [int, int] or [array, array]) – The bin specification:


	int
	If int, the number of bins for the two dimensions (nx=ny=bins).



	array-like
	If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).



	[int, int]
	If [int, int], the number of bins in each dimension (nx, ny = bins).



	[array, array]
	If [array, array], the bin edges in each dimension (x_edges, y_edges = bins).



	combination
	A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges.

The default is None, in which case a grid with 1 x 1 Angstrom resolution is created.







	ax (Axes, optional) – Matplotlib Axes on which to plot the projection. The default is None,
in which case a new figure and axes will be created.


	cmap (str or ~matplotlib.colors.Colormap, optional) – The Colormap instance or registered colormap name used to map
scalar data to colors.


	vmin, vmax (float, optional) – Define the data range that the colormap covers. By default,
the colormap covers the complete value range of the supplied
data.


	cbar (bool, optional) – Whether or not to add a colorbar to the plot.


	cbar_kws (dict, optional) – A dictionary of keyword options to pass to matplotlib.pyplot.colorbar.


	imshow_kws (dict, optional) – A dictionary of keyword options to pass to matplotlib.pyplot.imshow, which
is used to plot the 2D density map.






	Returns

	area_projection (ProjectionPlot) – The ProjectionPlot object containing the area per lipid data and the matplotlob.pyplot.imshow
plot of the projection.

















            

          

      

      

    

  

    
      
          
            
  
Lipid order parameter — lipyphilic.lib.order_parameter


	Author

	Paul Smith



	Year

	2021



	Copyright

	GNU Public License v2





This module provides methods for calculating the orientational order parameter
of lipid tails in a bilayer.


Coarse-grained order parameter

The class liyphilic.lib.order_parameter.SCC calculates the coarse-grained
order parameter, as defined in
Seo et al. (2020) [https://pubs.acs.org/doi/full/10.1021/acs.jpclett.0c01317].
The coarse-grained order parameter, \(S_{CC}\), is defined as:


\[S_{CC} = \displaystyle \frac{\big \langle 3 \cos^2 \theta - 1 \big \rangle}{2}\]

where \(\theta\) is the angle between the membrane normal and the vector connecting
two consecutive tail beads. Angular brackets denote averages over all beads
in an acyl tail.

See Piggot et al. (2017) [https://pubs.acs.org/doi/full/10.1021/acs.jctc.7b00643]
for an excellent discussion on calculating acyl tali order parameters in molecular
dynamics simulations.



Input


	Required:
	
	universe : an MDAnalysis Universe object


	tail_sel : atom selection for beads in the acyl tail






	Options:
	
	normals : local membrane normals for each tail at each frame










Output



	SCC : order parameter of each tail at each frame







The order parameter data are returned in a numpy.ndarray, where each
row corresponds to an individual lipid and each column corresponds to an individual frame.


Warning

tail_sel should select beads in either the sn1 or sn2 tails, not both tails.





Example usage of Scc

An MDAnalysis Universe must first be created before using SCC:

import MDAnalysis as mda
from lipyphilic.lib.order_parameter import SCC

u = mda.Universe(tpr, trajectory)





If we have used the MARTINI forcefield to study a DPPC/DOPC/cholesterol mixture,
we can calculate the order parameter of the sn1 of tails of DPPC and DOPC as follows:

scc_sn1 = SCC(
  universe=u,
  tail_sel="name ??A"  # selects C1A, C2A, D2A, C3A, and C4A
)





This will calculate \(S_{CC}\) of each DOPC and DPPC sn1 tail.

We then select which frames of the trajectory to analyse (None will use every
frame) and choose to display a progress bar (verbose=True):

scc_sn1.run(
  start=None,
  stop=None,
  step=None,
  verbose=True
)





The results are then available in the scc_sn1.SCC attribute as a
numpy.ndarray. The array has the shape (n_residues, n_frames). Each row
corresponds to an individual lipid and each column to an individual frame.

Likewise, to calculate the \(S_{CC}\) of the sn2 tails, we can do:

scc_sn2 = SCC(
  universe=u,
  tail_sel="name ??B"  # selects C1B, C2B, D2B, C3B, and C4B
)
scc_sn2.run(verbose=True)





And then get a weighted-average \(S_{CC}\) we can do:

SCC.weighted_average(scc_sn1, scc_sn2)





which will take into account the number of beads in each tail and return a new SCC
object whose SCC attribute contains the weighted-average \(S_{CC}\) for
each lipid at each frame.



Local membrane normals

By default, the \(S_{CC}\) is calculated as the angle between the positive
\(z\) axis and the vector between two consecutive beads in an acyl tail.
However, it is also possible to pass to SCC local membrane normals
to use instead of the positive \(z\) axis.

You can also calculate local membrane normals using, for example, MemSurfer [https://pubs.acs.org/doi/abs/10.1021/acs.jctc.9b00453]. If you store the local
membrane normals in a numpy.ndarray called normals, with shape
(n_residues, n_frames, 3), then you can simply pass these normals to SCC:

scc_sn1 = SCC(
  universe=u,
  tail_sel="name ??A",
  normals=normals
)
scc_sn1.run(verbose=True)







\(S_{CC}\) projected onto the membrane plane

Once the \(S_{CC}\) has been calculated, it is possible to create a 2D plot of time-averaged
\(S_{CC}\) values projected onto the membrane plane. This can be done using the
liypphilic.lib.SCC.project_SCC() method, which is a wrapper around the more general
liypphilic.lib.plotting.ProjectionPlot class.

If the lipids have been assigned to leaflets, and the weighted average of the sn1 and sn2 tails
stored in an SCC object named scc, we can plot the projection of the coarse-grained
order parameter onto the membrane plane as follows:

scc_projection = scc.project_SCC(
  lipid_sel="name ??A ??B",
  start=-100,
  stop=None,
  step=None,
  filter_by=leaflets.filter_by("name ??A ??B") == -1
)





The order parameter of each lipid parameter will be averaged over the final 100 frames, as
specified by the start argument. The frame in the middle of the selected frames will be used
for determining lipid positions. In the above case, the lipid positions at frame \(-50\) will be used.
The lipid_sel specifies that the center of mass of the sn1 (“??A”) and sn2 (“??B”) atoms will
be used for projecting lipid positions onto the membrane plane. And the filter_by argument is used here
to specificy that only lipids in the lower (-1) leaflet should be used for plotting the projected
\(S_{CC}\) values.



The class and its methods


	
class lipyphilic.lib.order_parameter.SCC(universe, tail_sel, normals=None)

	Calculate coarse-grained acyl tail order parameter.

Set up parameters for calculating the SCC.


	Parameters

	
	universe (Universe) – MDAnalysis Universe object


	tail_sel (str) – Selection string for atoms in either the sn1 or sn2 tail of lipids in the
membrane


	normals (numpy.ndarray, optional) – Local membrane normals, a 3D array of shape (n_residues, n_frames, 3), containing
x, y and z vector components of the local membrane normals.









	
project_SCC(lipid_sel=None, start=None, stop=None, step=None, filter_by=None, unwrap=True, bins=None, ax=None, cmap=None, vmin=None, vmax=None, cbar=True, cbar_kws={}, imshow_kws={})

	Project the SCC values onto the xy plane of the membrane.

The SCC values, averaged over a selected range of frames, are projected onto the xy
plane based on the center of mass of each lipid. The atoms to be used in calculating
the center of mass of the lipids can be specified using the lipid_sel arugment.

This method creates an instance of lipyphilic.lib.plotting.ProjectionPlot with
the projected \(S_{CC}\) interpolated across periodic boundaries.
The plot is returned so further modification can be performed if needed.


Note

The lipid positions are taken from the middle frame of the selected range.




	Parameters

	
	lipid_sel (MDAnalysis atom selection, optional) – The center of mass of each lipid will be determined via this selection.
The default is None, in which case every atom of a lipid is used to
determine its center of mass.


	start (int, optional) – Start frame for averaging the SCC results.


	stop (int, optional) – Final frame for averaging the SCC results.


	step (int, optional) – Number of frames to skip


	filter_by (array-like, optional) – A Boolean mask for selecting a subset of lipids.
It may take the following shapes:

(n_lipids)
The mask is used to select a subset of lipids for projecting the SCC
onto the membrane plane.

(n_lipids, n_frames)
This is the same shape as the NumPy array created by the
lipyphilic.lib.SCC.run() method. Boolean values are used only from the column
corresponding to the middle frame of the range selected by start, stop, and
step.

The default is None, in which case no filtering is applied.



	unwrap (bool, optional) – If True, lipids will be unwrapped before computing their center of mass, which is.


	bins (int or array_like or [int, int] or [array, array]) – The bin specification:


	int
	If int, the number of bins for the two dimensions (nx=ny=bins).



	array-like
	If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).



	[int, int]
	If [int, int], the number of bins in each dimension (nx, ny = bins).



	[array, array]
	If [array, array], the bin edges in each dimension (x_edges, y_edges = bins).



	combination
	A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges.

The default is None, in which case a grid with 1 x 1 Angstrom resolution is created.







	ax (Axes, optional) – Matplotlib Axes on which to plot the projection. The default is None,
in which case a new figure and axes will be created.


	cmap (str or ~matplotlib.colors.Colormap, optional) – The Colormap instance or registered colormap name used to map
scalar data to colors.


	vmin, vmax (float, optional) – Define the data range that the colormap covers. By default,
the colormap covers the complete value range of the supplied
data.


	cbar (bool, optional) – Whether or not to add a colorbar to the plot.


	cbar_kws (dict, optional) – A dictionary of keyword options to pass to matplotlib.pyplot.colorbar.


	imshow_kws (dict, optional) – A dictionary of keyword options to pass to matplotlib.pyplot.imshow, which
is used to plot the 2D density map.






	Returns

	scc_projection (ProjectionPlot) – The ProjectionPlot object containing the SCC data and the matplotlob.pyplot.imshow
plot of the projection.










	
static weighted_average(sn1_scc, sn2_scc)

	Calculate the weighted average Scc of two tails.

Given two SCC objects, a weighted average of the Scc of each lipid is calculated.


	Parameters

	
	sn1_scc (SCC) – An SCC object for which the order parameters have been calculated.


	sn2_scc (SCC) – An SCC object for which the order parameters have been calculated.






	Returns

	scc (SCC) – An SCC object with the weighted average Scc of each lipid at each frame stored in the
scc.SCC attirbute






Warning

The frames used in analysing ‘sn1_scc’ and ‘sn2_scc’ must be the same - i.e. the ‘start’,
‘stop’, and ‘step’ parameters passed to the ‘.run()’ methods must be identical.















            

          

      

      

    

  

    
      
          
            
  
Lipid z angles — lipyphilic.lib.z_angles


	Author

	Paul Smith



	Year

	2021



	Copyright

	GNU Public License v2





This module provides methods for calculating the angle lipids make with the
positive \(z\) axis.

Two atoms must be selected per lipid, and the angle between the \(z\) axis
and the vector joining the two atoms will be calculated for each lipid. The
vector will always point from atom B to atom A, even for lipids in the lower leaflet.
This means the angle \(\theta_{ABz}\) will be in the range
\(-180° < \theta < 180°\).


Input


	Required:
	
	universe : an MDAnalysis Universe object


	atom_A_sel : atom selection for atom A in each lipid


	atom_B_sel : atom selection for atom B in each lipid






	Options:
	
	rad : boolean variable specifying whether to return the angle in radians










Output



	z_angles : angle made between the \(z\)-axis and the vector from \(B\) to \(A\)







The \(z\) angles data are returned in a numpy.ndarray, where each row corresponds
to an individual lipid and each column corresponds to an individual frame.



Example usage of ZAngles

An MDAnalysis Universe must first be created before using ZAngles:

import MDAnalysis as mda
from lipyphilic.lib.z_angles import ZAngles

u = mda.Universe(tpr, trajectory)





If we have used the MARTINI forcefield to study a phospholipid/cholesterol mixture,
we can calculate the orientation of cholesterol in the bilayer as follows:

z_angles = ZAngles(
  universe=u,
  atom_A_sel="name ROH",
  atom_B_sel="name R5"
)





This will calculate the angle between the \(z\)-axis and the vector from the
R5 bead to the ROH bead of cholesterol.

We then select which frames of the trajectory to analyse (None will use every
frame) and choose to display a progress bar (verbose=True):

z_angles.run(
  start=None,
  stop=None,
  step=None,
  verbose=True
)





The results are then available in the z_angles.z_angles attribute as a
numpy.ndarray. The array has the shape (n_residues, n_frames). Each row
corresponds to an individual lipid and each column to an individual frame.


Calculate the angle in radians

By default, the results are returned in degrees. We can also specify that the
results should be returned in radians:

z_angles = ZAngles(
  universe=u,
  atom_A_sel="name ROH",
  atom_B_sel="name R5",
  rad=True
)








The class and its methods


	
class lipyphilic.lib.z_angles.ZAngles(universe, atom_A_sel, atom_B_sel, rad=False)

	Calculate the orientation of lipids in a bilayer.

Set up parameters for calculating the orientations.


	Parameters

	
	universe (Universe) – MDAnalysis Universe object


	atom_A_sel (str) – Selection string for atom A of lipids in the membrane.


	atom_B_sel (str) – Selection string for atom B of lipids in the membrane.


	rad (bool, optional) – Whether to return the angles in radians. The default is False, in which
case the results are returned in degrees.









Note

The orientation is defined as the angle between \(z\) and the vector from
atom B to atom A.











            

          

      

      

    

  

    
      
          
            
  
Lipid z positions — lipyphilic.lib.z_positions


	Author

	Paul Smith



	Year

	2021



	Copyright

	GNU Public License v2





This module provides methods for calculating the distance in \(z\) of lipids
to the bilayer center.

The class lipyphilic.lib.z_position.ZPositions assigns the membrane
midpoint to be at \(z = 0\) Lipids in the upper leaflet will have positive
\(z\) values and those in the lower leaflet will have negative \(z\) values.


Input


	Required:
	
	universe : an MDAnalysis Universe object


	lipid_sel : atom selection for all lipids in the bilayer


	height_sel : atom selection for the molecules for which the \(z\) position will be calculated






	Options:
	
	n_bins : split the membrane into n_bins * n_bins patches, and calculate local membrane midpoints for each patch










Output



	z_position : height in \(z\) of each selected molecule in the bilayer







The \(z\) positions data are returned in a numpy.ndarray, where each row corresponds
to an individual molecule and each column corresponds to an individual frame.



Example usage of ZPositions

An MDAnalysis Universe must first be created before using ZPositions:

import MDAnalysis as mda
from lipyphilic.lib.z_positions import ZPositions

u = mda.Universe(tpr, trajectory)





If we have used the MARTINI forcefield to study a phospholipid/cholesterol mixture,
we can calculate the height of cholesterol in the bilayer as follows:

z_positions = ZPositions(
  universe=u,
  lipid_sel="name GL1 GL2 ROH",
  height_sel="name ROH"
)





lipid_sel is an atom selection that covers all lipids in the bilayer. This
is used for calculating the membrane midpoint. height_sel selects which
atoms to use for caclulating the height of each each molecule.


Note

In the above example we are calculating the height of cholesterol in the bilayer, although
the height of any molecule - even those not in the bilayer, such as peptides - can be
calculated instead.



We then select which frames of the trajectory to analyse (None will use every
frame) and choose to display a progress bar (verbose=True):

z_positions.run(
  start=None,
  stop=None,
  step=None,
  verbose=True
)





The results are then available in the z_positions.z_positions attribute as a
numpy.ndarray. The array has the shape (n_residues, n_frames). Each row
corresponds to an individual molecule and each column to an individual frame.
The height is signed (not absolute) — positive and negative values correspond to
the molecule being in the upper of lower leaflet respecitvely.


\(z\) positions based on local membrane midpoints

The first example computes a global membrane midpoint based on all the atoms
of the lipids in the membrane. \(z\) positions are then calculated as the distance
to this midpoint. This is okay for planar bilayers, but can lead to inaccurate
results in membranes with undulations. If your bilayer has
undulations, ZPositions can account for this by creating a grid in \(xy\)
of your membrane, calculating the local membrane midpoint in each patch,
then find the distance of each molecule to its local midpoint. This is done through
use of n_bins:

z_positions = ZPositions(
  universe=u,
  lipid_sel="name GL1 GL2 ROH",
  height_sel="name ROH"
  n_bins=10
)





In this example, the membrane will be split into a 10 x 10 grid and a lipid
\(z\) positions calculated based on the distance to the midpoint of the patch the
molecule is in.


Warning

Using n_bins can account for small undulations. However, if you have large unulations in
your bilayer the calculated height will be inaccurate.






The class and its methods


	
class lipyphilic.lib.z_positions.ZPositions(universe, lipid_sel, height_sel, n_bins=1)

	Calculate the \(z\) position of molecules in a bilayer.

Set up parameters for calculating \(z\) positions.


	Parameters

	
	universe (Universe) – MDAnalysis Universe object


	lipid_sel (str) – Selection string for the lipids in a membrane. Atoms in this selection are used
for calculating membrane midpoints.


	height_sel (str) – Selection string for molecules for which the height in \(z\) will be calculated.
Any residues not in this selection will not have their \(z\) positions calculated.


	n_bins (int, optional) – Number of bins in x and y to use to create a grid of membrane patches.
Local membrane midpoints are computed for each patch, and lipid \(z\)
positions calculated based on the distance to their local membrane midpoint. The
default is 1, which is equivalent to computing a single global
midpoint.









Note

height_sel must be a subset of lipid_sel











            

          

      

      

    

  

    
      
          
            
  
Lipid z thickness — lipyphilic.lib.z_thickness


	Author

	Paul Smith



	Year

	2021



	Copyright

	GNU Public License v2





This module provides methods for calculating the thickness in \(z\) of lipids
or lipid tails.

The thickness of lipid tails is a useful input feature for creating Hidden Markov
Models (HMM) to detect phase separation in lipid bilayers. See Park and Im (2019) [https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00828] for a description of
using HMMs in lipid membrane analysis.


Input


	Required:
	
	universe : an MDAnalysis Universe object


	lipid_sel : atom selection for the atoms to be used in calculating the thickness of a lipid










Output



	z_thickness : thickness in \(z\) of each lipid in the bilayer







The \(z\) thickness data are returned in a numpy.ndarray, where each row corresponds
to an individual lipid and each column corresponds to an individual frame.



Example usage of ZThickness

An MDAnalysis Universe must first be created before using ZThickness:

import MDAnalysis as mda
from lipyphilic.lib.z_thickness import ZThickness

u = mda.Universe(tpr, trajectory)





If we have used the MARTINI forcefield to study a phospholipid/cholesterol mixture,
we can calculate the thickness of cholesterol and sn1 tails in the bilayer as follows:

z_thickness_sn1 = ZThickness(
  universe=u,
  lipid_sel="(name ??1 ??A) or (resname CHOL and not name ROH)"
)





Above, our lipid_sel selection will select sn1 beads and cholesterol beads in the MARTINI forcefield,
making use of the powerful MDAnalysis atom selection language.

We then select which frames of the trajectory to analyse (None will use every
frame) and choose to display a progress bar (verbose=True):

z_thickness_sn1.run(
  start=None,
  stop=None,
  step=None,
  verbose=True
)





The results are then available in the z_thickness_sn1.z_thickness attribute as a
numpy.ndarray. The array has the shape (n_residues, n_frames). Each row
corresponds to an individual lipid and each column to an individual frame.


Averaging the thickness of two tails

Above we saw how to calculate the thickness of the sn1 tail of lipids along with cholesterol.
Similarly, we can calculate the thickness of the sn2 tails:

z_thickness_sn2 = ZThickness(
  universe=u,
  lipid_sel="(name ??1 ??A) or (resname CHOL and not name ROH)"
)
z_thickness_sn2.run(verbose=True)





Now, if we would like to know the mean thickness of acyl tails across both sn1 and sn2 tails,
we can use the average() method of ZThickness:

z_thickness = ZThickness.average(
    z_thickness_sn1,
    z_thickness_sn2
)





This will average the thickness of the two tails, leaving the cholesterol thicknesses (from
z_thickness_sn1) unchanged, and return a new ZThickness object containing the averaged data
in its z_thickness attribute.




The class and its methods


	
class lipyphilic.lib.z_thickness.ZThickness(universe, lipid_sel)

	Calculate the thickness in z of lipids in a bilayer.

Set up parameters for calculating lipid thicknesses.


	Parameters

	
	universe (Universe) – MDAnalysis Universe object


	lipid_sel (str) – Selection string for atoms to use in calculating lipid thickneses









	
static average(sn1_thickness, sn2_thickness)

	Calculate the average thickness of two tails.

Given two ZThickness objects, typically each representing either the sn1 or sn2 tails of the lipids,
an averagte thickness of each lipid is calculated.


	Parameters

	
	sn1_thickness (ZThickness) – A ZThickness object for which the thicknesses have been calculated.


	sn2_thickness (ZThickness) – A ZThickness object for which the thicknesses have been calculated.






	Returns

	z_thickness (ZThickness) – A new ZThickness object containing the averaged data in its z_thickness attribute.






Warning

The frames used in analysing ‘sn1_thickness’ and ‘sn2_thickness’ must be the same - i.e. the ‘start’,
‘stop’, and ‘step’ parameters passed to the ‘.run()’ methods must be identical.















            

          

      

      

    

  

    
      
          
            
  
Membrane thickness — lipyphilic.lib.memb_thickness


	Author

	Paul Smith



	Year

	2021



	Copyright

	GNU Public License v2





This module provides methods for calculating the membrane thickness over time.

The membrane thickness is defined as the mean distance in \(z\) between lipids
in the upper and lower leaflets. A discrete intrinsic surface is constructed for each
leaflet based on user-defined lipid headgroup atoms, and the mean distance in \(z\)
between the two surfaces defines the membrane thickness.


Input


	Required:
	
	universe : an MDAnalysis Universe object


	leaflets : a NumPy array containing the leaflet membership of each lipid at each frame


	lipid_sel : atom selection for lipids in the upper leaflet to used in the thickness calculation








Options:
- n_bins : a discrete intrinsic surface of each leaflet is created with n_bins * n_bins patches



Output



	thickness : the mean membrane thickness at each frame







Thickness data are returned in a numpy.ndarray, containing the mean membrane thickness at each
frame.



Example usage of MembThickness

An MDAnalysis Universe must first be created before using MembThickness:

import MDAnalysis as mda
from lipyphilic.lib.memb_thickness import MembThickness

u = mda.Universe(tpr, trajectory)





Then we need to know which leaflet each lipid is in at each frame. This may be done using
lipyphilic.lib.assign_leaflets.AssignLeaflets:

leaflets = AssignLeaflets(
  universe=u,
  lipid_sel="name GL1 GL2 ROH" # assuming we are using the MARTINI forcefield
)
leaflets.run()





The leaflets data are stored in the leaflets.leaflets attribute. We can now create our
MembThickness object by passing the results of lipyphilic.lib.assign_leaflets.AssignLeaflets
MembThickness along with an atom selection for the lipids:

memb_thickness = MembThickness(
  universe=u,
  leaflets=leaflets.filter_leaflets("resname DOPC and DPPC"),  # exclude cholesterol from thickness calculation
  lipid_sel="resname DPPC DOPC and name PO4"
)





To calculate the membrane thickness, based on interleaflet PO4 to PO4 distances, we need to use the
run() method. We select which frames of the trajectory to analyse (None will use every
frame) and choose to display a progress bar (verbose=True):

memb_thickness.run(
  start=None,
  stop=None,
  step=None,
  verbose=True
)





The results are then available in the memb_thickness.memb_thickness attribute as a
numpy.ndarray.


Changing the resolution of the 2D grid

By default, the lipid positions of each leaflet are binned into a two-dimensional
histogram using 1 bins in each dimension. This is equivalent to calculating the mean
height of all headgroup atoms in the bilayer, without discretising the surface.

It is also possible to specify the bins to use for binning the data:

memb_thickness = MembThickness(
  universe=u,
  leaflets=leaflets.filter_leaflets("resname DOPC and DPPC"),  # exclude cholesterol from thickness calculation
  lipid_sel="resname DPPC DOPC and name PO4",
  n_bins=10
)





This will use 10 bins in each dimension for creating the two-dimensional histogram.



Interpolate missing values in a grid with many bins

This is useful only if you would like a very high resolution grid. Having a higher
resolution grid may be useful if you would like to later calculate, for example, the
correlation between local membrane thicknesses and the local membrane area per lipid.
The area per lipid can be projected onto the membrane plane using the class
ProjectionPlot, and the height of the bilayer as a function of \(xy\) can be
obtained from MembThickness by setting the return_surface keyword to True.

A grid with a small bin size (large n_bins) will lead to bins with no atom, and thus no
height value. In this instance, the interpolate keyword should be set to True.
However, interpolation substantially decreases performance and should be left as False unless
it is strictly necessary.




The class and its methods


	
class lipyphilic.lib.memb_thickness.MembThickness(universe, lipid_sel, leaflets, n_bins=1, interpolate=False, return_surface=False)

	Calculate the bilayer thickness.

Set up parameters for calculating membrane thickness.


	Parameters

	
	universe (Universe) – MDAnalysis Universe object


	leaflets (numpy.ndarray (n_lipids,)) – An array of leaflet membership in which: -1 corresponds to the lower leaflet;
1 corresponds to the upper leaflet; and 0 corresponds to the midplane.
If the array is 1D and of shape (n_lipids), each lipid is taken to
remain in the same leaflet over the trajectory. If the array is 2D and
of shape (n_lipids, n_frames), the leaflet to which each lipid is
assisgned at each frame will be taken into account when calculating
the area per lipid.


	lipid_sel (str, optional) – Selection string for lipid atoms to be used in the thickness calculation.
The default is None, in which case all atoms of the lipids will be used.


	n_bins (int, optional) – Number of bins in x and y to use to create a grid of membrane patches.
The intrinsic surface of a leaflet is constructed via the height in z
of each patch. The default is 1, which is equivalent to computing a
single global leaflet height.


	interpolate (bool, optional) – If True, interpolate the two intrinsic surfaces to fill missing values.
This substantially decreases performance but allows for the construction
of higher-resolution grids. The default is False.


	return_surface (bool, optional) – If True, the height of the bilayer at grid point at each frame is returned as
numpy ndarray. The default is False.









Tip

Leaflet membership can be determined using lipyphilic.lib.assign_leaflets.AssignLeaflets.











            

          

      

      

    

  

    
      
          
            
  
Lateral diffusion — lipyphilic.lib.lateral_diffusion

This module contains methods for calculating the lateral diffusion coefficient
of lipids in a bilayer.

The class lipyphilic.lib.lateral_diffusion.MSD calculates the two-dimensional
mean squared displacent (MSD) of lipids in a bilayer. The Fast Correlation Algorithm [https://www.sciencedirect.com/science/article/pii/001046559500048K], implemented
in tidynamics [http://lab.pdebuyl.be/tidynamics/] is used to calculate the MSD of
each lipid, with optional removal of the center of mass motion of the bilayer.

lipyphilic.lib.lateral_diffusion.MSD also contains a method for calculating the
lateral diffusion coefficient, \(D_{xy}\), via the Einstein relation:


\[D_{xy} = \frac{1}{4} \lim_{t\to\infty} \frac{d}{dt} \displaystyle \Bigg\langle \frac{1}{N} \sum_{i=1}^{N} \left  | r_i(t_0 + \Delta t) - r_i(t_0) \right |^2 \displaystyle \Bigg\rangle_{t_0}\]

where \(N\) is the number of lipids, \(r_i(t0)\) is the center of mass in \(xy\)
of lipids \(i\) at a time origin t_0, \(r_i(t0 + \Delta t)\) is the same lipid’s
center of mass at a lagtime \(\Delta t\), and the angular brackets denote an average
over all time origins, \(t_0\).

Typically, the MSD is averaged over all molecules. However, lipyphilic.lib.lateral_diffusion.MSD
will return the MSD for each individual lipid. This makes it simple to later calculate the diffusion
coefficient using a subset of the lipids, such as a specific lipid species or lipids near a protein.


Input


	Required:
	
	universe : an MDAnalysis Universe object


	lipid_sel : atom selection for calculating the MSD






	Optional:
	
	com_removal_sel : atom selection for center of mass removal from the MSD


	dt : time period betwen consecutive frames in the MSD analysis










Output



	msd : the mean squared displacement of each lipid at each lagtime, \(\Delta t\), in \(nm^2\):


	lagtimes : a NumPy array of lagtimes (in \(ns\))







The data are stored in the MSD.msd and MSD.lagtimes attributes.


Warning

Before using lipyphilic.lib.lateral_diffusion.MSD you must ensure that the coordinates have
been unwrapped using, for example, lipyphilic.transformations.nojump.





Example usage of MSD

To calculate the MSD of each lipid in a bilayer we must first load a trajectory using
MDAnalysis:

import MDAnalysis as mda
from lipyphilic.lib.lateral_diffusion import MSD

u = mda.Universe(tpr, trajectory)





If we have used the MARTINI forcefield to study a phospholipid/cholesterol mixture,
we can calculate the MSD of each lipid as follows:

msd = MSD(
  universe=u,
  lipid_sel="resname DPPC DOPC CHOL"
)





We then select which frames of the trajectory to analyse (None will use every
frame) and choose to display a progress bar (verbose=True):

msd.run(
  start=None,
  stop=None,
  step=None,
  verbose=True
)





The results are then available in the msd.MSD attribute as a
numpy.ndarray. Each row corresponds to an individual lipid and each column
to a different lagtime`.



Center of mass removal

During your simulation, it is likely that you removed the center of mass motion of your
bilayer in the \(z\) direction. However, it is not possible to remove the \(x\)
and \(y\) center of mass motions until you have unwrapped your lipid positions.

You may select which lipids to use for the center of mass motion removal using the
com_removal_sel keyword:

msd = MSD(
  universe=u,
  lipid_sel="resname DPPC",
  com_removla_sel="resname DPPC DOPC CHOL"
)





In this case, the MSD of DPPC will be calculated with the center of mass motion of the
bilayer will be subtracted from it.



Plotting the MSD of each species

If you have calculated the MSD of DPPC, DOPC and cholesterol as in the first example, you
can plot the MSD of each species as follows:

for species in ["DPPC", "DOPC", "CHOL"]:

  plt.loglog(
    msd.lagtimes,
    np.mean(msd.msd[msd.membrane.residues.resnames == species], axis=0),
    label=species
  )

plt.legend()





The linear part of the log-log plot can be used for fitting a line and calculating the
diffusion coefficient.



Calculating the lateral diffusion coefficient

After calculating the MSD and identifying the linear portion of the plot, the
:func: diffusion_coefficient method of lipyphilic.lib.lateral_diffusion.MSD
can be used to calculate \(D_{xy}\). We need to pass the time at which to start and
stop the linear fit:

d, sem = msd.diffusion_coefficient(
  start_fit=400,
  end_fit=600
)





This will calculate a diffusion coefficient for each individual lipid and return the mean
and standard error of the distribution of coefficients.

To calculate the diffusion coefficient of a subset of lipids we can use the :attr:lipid_sel
keyword:

d, sem = msd.diffusion_coefficient(
  start_fit=400,
  end_fit=600,
  lipid_sel="resname CHOL"
)





which will calculate the lateral diffusion coefficient for cholesterol, using a fit to the MSD
curve from lagtime \(\Delta t = 400\) to lagtime \(\Delta t = 600\).


	
class lipyphilic.lib.lateral_diffusion.MSD(universe, lipid_sel, com_removal_sel=None, dt=None)

	Calculate the mean-squared lateral displacement of lipids in a bilayer.

The MSD is returned in units of \(nm^2/ns\).


	Parameters

	
	universe (Universe) – MDAnalysis Universe object


	lipid_sel (str) – Selection string for calculating the mean-squared displacemnt. IF multiple atoms
per lipid are selected, the center-of-mass of these atoms will be used for
calculating the MSD.


	com_removal_sel (str, optional) – The MSD of the center of mass of atoms in this selection will be subtracted from
all individual lipid MSDs. The default is None, in which case no center of mass
motion removal is performed.


	dt (float, optional) – The time, in nanoseconds, between consecutive frames in universe.trajectory.
The defualt is None, in which case dt is taken to be universe.trajectory.dt
divided by 1000.









	
diffusion_coefficient(start_fit=None, stop_fit=None, lipid_sel=None)

	Calculate the lateral diffusion coefficient via the Einstein relation.

A diffusion is calculated for each lipid through a linear fit to its MSD curve.
The mean and standard error of the diffusion coefficient is returned.


	Parameters

	
	start_fit (float, optional) – The time at which to start the linear fit to the MSD curve. The default is
None, in which case the fit will exclude the first 20% of the MSD data.


	stop_fit (float, optional) – The time at which to stop the linear fit to the MSD curve. The default is
None, in which case the fit will exclude the final 20% of the MSD data.


	lipid_sel (str, optional) – Selection string for lipids to include in calculating the diffusion
coefficient.






	Returns

	
	d (float) – The mean lateral diffusion coefficient, in
\(cm^2/s\)., averaged over all lipids in lipid_sel.


	sem (float) – The standard error of the diffusion coefficients.






















            

          

      

      

    

  

    
      
          
            
  
Plotting utilities — lipyphilic.lib.plotting


	Author

	Paul Smith



	Year

	2021



	Copyright

	GNU Public License v2





Generally, lipyphilic is not a plotting library — everyone has their favourite plotting
tool and aesthetics and so plotting is generally left up to the user. However, some plots
are complex to make, requiring further processing of results or lots of boilerplate code
to get the end result.

This module provides methods for plotting joint probability densities and lateral
distribution maps of lipid properties projected onto the membrane plane.

The class lipyphilic.lib.plotting.ProjectionPlot can be used, for example, to plot
the area per lipid projected onto the membrane plane, i.e. plot the area per lipid
as a function of \(xy\). See Gu et al. (2020) [https://pubs.acs.org/doi/full/10.1021/jacs.9b11057] for examples of these
projection plots.

The class lipyphilic.lib.plotting.JointDensity can be used, for example, to
plot a 2D PMF of cholesterol orientation and height in a lipid membrane. See
Gu et al. (2019) [https://pubs.acs.org/doi/10.1021/acs.jctc.8b00933]
for an example of the this 2D PMF.


The classes and their methods


	
class lipyphilic.lib.plotting.ProjectionPlot(x_pos, y_pos, values)

	Plot membrane properties as a function of xy. See

This class can be used for plotting membrane properties projected onto the \(xy\) plane.
This is useful, for example, for detecting phase separation in lipid membranes.

The plotted data are stored in the .statistic attribute. This means, if you plot separately
the projection of a membrane property of lipids in the upper and lower leaflets, you can easily
calculate the correlation coefficient of this property across the leaflets.


	
interpolate(tile=True, method='linear', fill_value=numpy.NaN)

	Interpolate NaN values in the projection array.

Uses scipy.interpolate.griddata to interpolate missing values and
optionally remove NaN values.


	Parameters

	
	tile (bool, optional) – If True, the xy values will be tiled on a (3, 3) grid to reproduce the
effect of periodic boundary conditions. If False, no periodic boundary conditions
are taken into account when interpolating.


	method ({‘linear’, ‘nearest’, ‘cubic’}, optional) – Method of interpolation. One of:

nearest
return the value at the data point closest to
the point of interpolation. See SciPy’s
NearestNDInterpolator for more details.

linear
tessellate the input point set to N-D
simplices, and interpolate linearly on each simplex.
See SciPy’s LinearNDInterpolator for more details.

cubic
return the value determined from a
piecewise cubic, continuously differentiable (C1), and
approximately curvature-minimizing polynomial surface. See
SciPy’s CloughTocher2DInterpolator for more details.



	fill_value (float, optional) – Value used to fill in for requested points outside of the
convex hull of the input points. This option has no effect for the
‘nearest’ method. If not provided, then the these points will
have NaN values.


	rescale (bool, optional) – Rescale points to unit cube before performing interpolation.
This is useful if some of the input dimensions have
incommensurable units and differ by many orders of magnitude.













	
plot_projection(ax=None, title=None, xlabel=None, ylabel=None, cmap=None, vmin=None, vmax=None, cbar=True, cbar_kws=None, imshow_kws=None)

	Plot the 2D projection of a membrane property.

Use matplotlib.pyplot.imshow to plot a heatmap of the values.


	Parameters

	
	ax (Axes, optional) – Matplotlib Axes on which to plot the projection. The default is None,
in which case a new figure and axes will be created.


	title (str, optional) – Title for the plot. By default, there is no title.


	xlabel (str, optional) – Label for the x-axis. By default, there is no label on the x-axis.


	ylabel (str, optional) – Label for the y-axis. By default, there is no label on the y-axis.


	cmap (str or ~matplotlib.colors.Colormap, optional) – The Colormap instance or registered colormap name used to map
scalar data to colors.


	vmin, vmax (float, optional) – Define the data range that the colormap covers. By default,
the colormap covers the complete value range of the supplied
data.


	cbar (bool, optional) – Whether or not to add a colorbar to the plot.


	cbar_kws (dict, optional) – A dictionary of keyword options to pass to matplotlib.pyplot.colorbar.


	imshow_kws (dict, optional) – A dictionary of keyword options to pass to matplotlib.pyplot.imshow, which
is used to plot the 2D density map.






	Returns

	
	ProjectionPlot.fig – Matplotlib Figure on which the plot was drawn.


	ProjectionPlot.ax – Matplotlib Axes on which the plot was drawn.


	ProjectionPlot.cbar – If a colorbar was added to the plot, this is the Matplotlib colorbar instance for
ProjectionPlot.ax. Otherwise it is None.















	
project_values(bins, statistic='mean')

	Discretise the membrane and project values onto the xy-plane


	Parameters

	
	bins (int or array_like or [int, int] or [array, array]) – The bin specification:


	int
	If int, the number of bins for the two dimensions (nx=ny=bins).



	array-like
	If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).



	[int, int]
	If [int, int], the number of bins in each dimension (nx, ny = bins).



	[array, array]
	If [array, array], the bin edges in each dimension (x_edges, y_edges = bins).



	combination
	A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges.







	statistic (string or callable, optional) – The statistic to project onto the membrae plane (the default is ‘mean’).
The following statistics are available:


	mean
	compute the mean of values for points within each bin.
Empty bins will be represented by NaN.



	std`
	compute the standard deviation within each bin.



	median
	compute the median of values for points within each
bin. Empty bins will be represented by NaN.



	count
	compute the count of points within each bin.  This is
identical to an unweighted histogram. The value of the
membrane property is not referenced.



	sum
	compute the sum of values for points within each bin.
This is identical to a weighted histogram.



	min
	compute the minimum of values for points within each bin.
Empty bins will be represented by NaN.



	max
	compute the maximum of values for point within each bin.
Empty bins will be represented by NaN.



	function
	a user-defined function which takes a 1D array of
values, and outputs a single numerical statistic. This function
will be called on the values in each bin.  Empty bins will be
represented by function([]), or NaN if this returns an error.






















	
class lipyphilic.lib.plotting.JointDensity(ob1, ob2)

	Calculate and plot the joint probability density of two observables.

Set up parameters for calculating joint densities.


	Parameters

	
	ob1 (array_like) – An array containing values of the first observable.


	ob2 (array_like) – An array containing values of the second observable. It must have the same shape as ob1









	
calc_density_2D(bins, filter_by=None, temperature=None)

	Calculate the joint probability density of two observables.

If a tempearutre is provided, the PMF is calculated directly from the probability
distribution.


	Parameters

	
	bins (int or array_like or [int, int] or [array, array]) – The bin specification:


	int
	If int, the number of bins for the two dimensions (nx=ny=bins).



	array-like
	If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).



	[int, int]
	If [int, int], the number of bins in each dimension (nx, ny = bins).



	[array, array]
	If [array, array], the bin edges in each dimension (x_edges, y_edges = bins).



	combination
	A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges.







	filter_by (2D numpy array of shape (n_residues, n_frames), optional) – A boolean mask for filtering lipids or frames. The default is None, in which case
no filtering is performed.


	temperature (float, optional) – Temperature of the system, which will be used to convert the 2D density into
a PMF. The default is None, in which case the density is returned rather than
the PMF.













	
interpolate(method='linear', fill_value=None, rescale=True)

	Interpolate NaN values in the joint probability density or PMF.

Uses scipy.interpolate.griddata to interpolate the joint density and
optionally remove NaN values.


	Parameters

	
	method ({‘linear’, ‘nearest’, ‘cubic’}, optional) – Method of interpolation. One of:


	nearest
	return the value at the data point closest to
the point of interpolation. See SciPy’s
NearestNDInterpolator for more details.



	linear
	tessellate the input point set to N-D
simplices, and interpolate linearly on each simplex.
See SciPy’s LinearNDInterpolator for more details.



	cubic
	return the value determined from a
piecewise cubic, continuously differentiable (C1), and
approximately curvature-minimizing polynomial surface. See
SciPy’s CloughTocher2DInterpolator for more details.







	fill_value (float, optional) – Value used to fill in for requested points outside of the
convex hull of the input points. This option has no effect for the
‘nearest’ method. If not provided, then the
default is to use the maximum free energy value if a PMF was
calculated, or 0 otherwise.


	rescale (bool, optional) – Rescale points to unit cube before performing interpolation.
This is useful if some of the input dimensions have
incommensurable units and differ by many orders of magnitude.













	
plot_density(difference=None, ax=None, title=None, xlabel=None, ylabel=None, cmap=None, vmin=None, vmax=None, n_contours=4, contour_labels=None, cbar=True, cbar_kws=None, imshow_kws=None, contour_kws=None, clabel_kws=None)

	Plot the 2D density or PMF.

Use matplotlib.pyplot.imshow to plot a heatmap of the density.

Optionally, add contour lines using matplotlib.pyplot.contour and label the contours
with their values.


	Parameters

	
	difference (JointDensity, optional) – A JointDensity object for which the probability density or PMF has been calculated.
Before ploting, the density or PMF of difference will be subtracted from the
density of PMF of this object. This is useful for plotting difference in PMFs due
to e.g a change in membrane lipid composition.


	ax (Axes, optional) – Matplotlib Axes on which to plot the 2D denstiy. The default is None,
in which case a new figure and axes will be created.


	title (str, optional) – Title for the plot. By default, there is no title.


	xlabel (str, optional) – Label for the x-axis. By default, there is no label on the x-axis.


	ylabel (str, optional) – Label for the y-axis. By default, there is no label on the y-axis.


	cmap (str or ~matplotlib.colors.Colormap, optional) – The Colormap instance or registered colormap name used to map
scalar data to colors.


	vmin, vmax (float, optional) – Define the data range that the colormap covers. By default,
the colormap covers the complete value range of the supplied
data.


	n_contours (int or array-like, optional) – Determines the number and positions of the contour lines / regions
plotted with matplotlib.pyplot.contour:


	int
	If an int n, use ~matplotlib.ticker.MaxNLocator, which tries
to automatically choose no more than n+1 “nice” contour levels
between vmin and vmax.



	array-like
	If array-like, draw contour lines at the specified levels.
The values must be in increasing order.



	0
	If 0, no contour lines are drawn.







	contour_labels (array-like, optional) – A list of contour level indices specifyig which levles should be labeled.
The default is None, in which case no contours are labeled.


	cbar (bool, optional) – Whether or not to add a colorbar to the plot.


	cbar_kws (dict, optional) – A dictionary of keyword options to pass to matplotlib.pyplot.colorbar.


	imshow_kws (dict, optional) – A dictionary of keyword options to pass to matplotlib.pyplot.imshow, which
is used to plot the 2D density map.


	contour_kws (dict, optional) – A dictionary of keyword options to pass to matplotlib.pyplot.contour, which
is used to plot the contour lines.


	clabel_kws (dict, optional) – A dictionary of keyword options to pass to matplotlib.pyplot.contour, which
is used to add labels to the contour lines.






	Returns

	
	JointDensity.fig – Matplotlib Figure on which the plot was drawn.


	JointDensity.ax – Matplotlib Axes on which the plot was drawn.


	JointDensity.cbar – If a colorbar was added to the plot, this is the Matplotlib colorbar instance for
JointDensity.ax. Otherwise it is None.






















            

          

      

      

    

  

    
      
          
            
  
Trajectory transformations — lipyphilic.transformations

This module contains methods for applying on-the-fly trajectory transformations
with MDAnalysis.


Prevent atoms from jumping across periodic boundaries

lipyphilic.transformations.nojump can be used to prevent atoms from jumping across
periodic boundaries. It is equivalent to using the
GROMACS [https://manual.gromacs.org/current/index.html] command
trjconv [https://manual.gromacs.org/current/onlinehelp/gmx-trjconv.html] with the flag
-pbc nojump.

The on-the-fly transformation can be added to your trajectory after loading it with
MDAnalysis:

import MDAnalysis as mda
from lipyphilic.transformations import nojump

u = mda.Universe("production.tpr", "production.xtc")

ag = u.select_atoms("name GL1 GL2 ROH")

u.trajectory.add_transformations(nojump(ag))





Upon adding this transformation to your trajectory, lipyphilic will determine at which frames
each atom crosses a boundary, keeping a record of the net movement across each boundary. Then,
every time a new frame is loaded into memory by MDAnalysis — such as when you iterate over
the trajectory — the transformation is applied.

This transformation is required when calculating the lateral diffusion of lipids in a membrane
using, for example, lipyphilic.lib.lateral_diffusion.MSD. It can be used to remove the
need to create an unwrapped trajectory using GROMACS.



Fix membranes broken across periodic boundaries

The callable class lipyphilic.transformations.center_membrane can be used to fix a membrane
split across periodic boundaries and then center it in the unit cell. The membrane is iteratively
shifted along a dimension until it is no longer split across periodic boundaries. It is then
moved it to the center of the box in this dimension.

The on-the-fly transformation can be added to your trajectory after loading it with
MDAnalysis:

import MDAnalysis as mda
from lipyphilic.transformations import center_membrane

u = mda.Universe("production.tpr", "production.xtc")

ag = u.select_atoms("resname DPPC DOPC CHOL")

u.trajectory.add_transformations(center_membrane(ag))





This will center a DPPC/DOPC/cholesterol membrane in \(z\) every time a new frame is loaded
into memory by MDAnalysis, such as when you iterate over the trajectory:

for ts in u.trajectory:

    # do some nice analysis with your centered membrane






Note

ag should be an AtomGroup that contains all atoms in the membrane.





Transform triclinic coordinates to their orthorhombic representation

lipyphilic.transformations.triclinic_to_orthorhombic can be used to transform
triclinic coordinates to their orthorhombic representation. It is equivalent to using the
GROMACS [https://manual.gromacs.org/current/index.html] command
trjconv [https://manual.gromacs.org/current/onlinehelp/gmx-trjconv.html] with the flag
-ur rect.

The on-the-fly transformation can be added to your trajectory after loading it with
MDAnalysis:

import MDAnalysis as mda
from lipyphilic.transformations import triclinic_to_orthorhombic

u = mda.Universe("production.tpr", "production.xtc")

ag = u.select_atoms("resname DPPC DOPC CHOL")
u.trajectory.add_transformations(triclinic_to_orthorhombic(ag=ag))





After adding this transformation, upon load a new frame into memory the coordinates of the
selected atoms will be transformed, and the dimensions of your system will be modified so that the
angles are all 90°. Further analysis may then be performed using the orthorhombic coordinate
system.

Some analyses in lipyphilic create a surface of the membrane plane using a two-dimensional
rectangular grid. This includes



	lipyphilic.lib.assign_leaflet.AssignLeaflets


	lipyphilic.lib.memb_thickness.MembThicnkess


	lipyphilic.lib.registration.Registration







These analyses will fail with triclinic boxes - the triclinic_to_orthorhombic transformation
must be applied to triclinic systems before these tools can be used.

Another case that will fail with triclinic systems is the lipyphilic.transformations.nojump
transformation -  this transformation can currently only unwrap coordinates for orthorhombic
systems.

See lipyphilic.transformations.triclinic_to_orthorhombic for the full list.


	
class lipyphilic.transformations.nojump(ag, nojump_x=True, nojump_y=True, nojump_z=False, filename=None)

	Prevent atoms jumping across periodic boundaries.

This is useful if you would like to calculate the diffusion coefficient
of lipids in your membrane.

This transformation does an initial pass over the trajectory to determine at which frames
each atom crosses a boundary, keeping a record of the net movement across each boundary.
Then, as a frame is loaded into memory, atom positions are translated according to their
total displacement, taking into account crossing of boundaries as well box fluctuations
in the box volume.

By default, atoms are only unwrapped in \(xy\), as it is assumed the membrane
is a bilayer. To unwrap in all dimensions, center_z must also be set to True.


	Parameters

	
	ag (AtomGroup) – MDAnalysis AtomGroup to which to apply the transformation


	nojump_x (bool, optional) – If true, atoms will be prevented from jumping across periodic boundaries
in the x dimension.


	nojump_y (bool, optional) – If true, atoms will be prevented from jumping across periodic boundaries
in the y dimension.


	nojump_z (bool, optional) – If true, atoms will be prevented from jumping across periodic boundaries
in the z dimension.


	filename (str, optional) – File in which to write the unwrapped, nojump trajectory. The default is None,
in which case the transformation will be applied on-the-fly.py






	Returns

	MDAnalysis.coordinates.base.Timestep object, or None if a filename is provided.






Note

The nojump transformation is memory intensive to perform on-the-fly. If you have a long
trajectory or a large number of atoms to be unwrapped, you can write the unwrapped coordinates
to a new file by providing a filename to nojump.




Warning

The current implementation of nojump can only unwrap coordinates in orthorhombic systems.








	
class lipyphilic.transformations.center_membrane(ag, shift=20, center_x=False, center_y=False, center_z=True, min_diff=10)

	Fix a membrane split across periodic boundaries and center it in the primary unit cell.

If, for example, the bilayer is split across \(z\), it will be iteratively
translated in \(z\) until it is no longer broken. Then it will
be moved to the center of the box.

A membrane with a maximum extent almost the same size as the box length in a given dimension
will be considered to be split across that dimension.

By default, the membrane is only centered in \(z\), as it is assumed the membrane
is a bilayer. To center a micelle, center_x and center_y must also be set to True.


	Parameters

	
	ag (AtomGroup) – MDAnalysis AtomGroup containing all atoms in the membrane.


	shift (float, optional) – The distance by which a bilayer will be iteratively translated. This
must be smaller than the thickness of your bilayer or the diameter
of your micelle.


	min_diff (float, optional) – Minimum difference between the box size and the maximum extent of the
membrane in order for the membrane to be considered unwrapped.


	center_x (bool, optional) – If true, the membrane will be iteratively shifted in x until it is
not longer split across periodic boundaries.


	center_y (bool, optional) – If true, the membrane will be iteratively shifted in y until it is
not longer split across periodic boundaries.


	center_z (bool, optional) – If true, the membrane will be iteratively shifted in z until it is
not longer split across periodic boundaries.






	Returns

	MDAnalysis.coordinates.base.Timestep object










	
class lipyphilic.transformations.triclinic_to_orthorhombic(ag)

	Transform triclinic coordinates to their orthorhombic representation.

If you have a triclinic system, it is essential to apply this transformation before
using the following analyses:



	lipyphilic.lib.assign_leaflet.AssignLeaflets


	lipyphilic.lib.area_per_lipid.AreaPerLipid


	lipyphilic.lib.memb_thickness.MembThicnkess


	lipyphilic.lib.registration.Registration







as well as before the following on-the-fly transformations:



	lipyphilic.transformations.nojump


	lipyphilic.transformations.center_membrane







The above tools will fail unless provided with an orthorhombic system.

This transformation is equivalent to using the
GROMACS [https://manual.gromacs.org/current/index.html] command
trjconv [https://manual.gromacs.org/current/onlinehelp/gmx-trjconv.html] with the
flag -ur rect.


Note

triclinic_to_rectangular will put all selected atoms into the primary (orthorhombic)
unit cell - molecules will not be kept whole or unwrapped.




Warning

If you wish to apply the triclinic_to_orthorhombic transformation along with
other on-the-fly transformations, triclinic_to_orthorhombic must be the first
one applied.




	Parameters

	ag (AtomGroup) – MDAnalysis AtomGroup to which to apply the transformation













            

          

      

      

    

  

    
      
          
            
  
Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.


Bug reports

When reporting a bug [https://github.com/p-j-smith/lipyphilic/issues] please include:



	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.









Documentation improvements

lipyphilic could always use more documentation, whether as part of the
official lipyphilic docs [https://lipyphilic.readthedocs.io/en/latest/],
in docstrings, or even on the web in blog posts, articles, and such.



Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/p-j-smith/lipyphilic/issues.

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.


	Remember that this is a volunteer-driven project, and that code contributions are welcome :)






Development

To set up lipyphilic for local development:


	Create and activate your isolated development environment:

curl https://raw.githubusercontent.com/p-j-smith/lipyphilic/master/requirements-dev.yml -o lipyphilic-dev.yml
conda env create -f lipyphilic-dev.yml
conda activate lipyphilic-dev







	Fork lipyphilic [https://github.com/p-j-smith/lipyphilic]
(look for the “Fork” button).


	Clone your fork locally:

git clone git@github.com:YOURGITHUBNAME/lipyphilic.git







	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.



	When you’re done making changes run all the checks and docs builder with tox [https://tox.readthedocs.io/en/latest/install.html] one command:

tox







	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.





Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:


	Include passing tests (run tox) 1.


	Update documentation when there’s new API, functionality etc.


	Add a note to CHANGELOG.rst about the changes.


	Add yourself to AUTHORS.rst.





	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.com//github/p-j-smith/lipyphilic/pull_requests]
for each change you add in the pull request.

It will be slower though …







Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature





To run all the test environments in parallel:

tox -p auto





To check that the docs build:

tox -e docs





And to check the build and test coverage (using python 3.8):

tox -e py38-cover
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LiPyphilic CHANGELOG


0.10.0 (2021-12-29)


	PR89 Delete temporary files created by tests


	PR88 Use GitHub Actions for running tests rather than Travis.


	PR#86 Add option to SCC.project_SCC to not unwrap lipids before calculating their center of masses






0.9.0 (2021-09-02)


	PR#78 Min MDAnalysis version increased to 2.0






0.8.0 (2021-07-31)


	PR#74 Add the triclinic_to_orthorhombic transformation in order to support analysis of triclinic systems






0.7.0 (2021-07-03)


	PR#70 Remove support for Python 3.6


	PR#69 Change MSD lagtimes to be in ns rather than ps. Fix nojump unwrapping for the first frame.






0.6.3 (2021-05-09)


	PR#60 AssignLeaflets and AssignCurvedLeaflets inherit from shared leaflet analysis base class


	PR#59 Ensure SCC.weighted_average can handle different sized sn1 and sn2 residue groups.


	PR#56 Update docs






0.6.2 (2021-04-18)


	PR#54 Fixed typos in docs


	PR#53 Improved performance of lipyphilic.lib.flip_flop.FlipFlop


	PR#52 Improved performance of lipyphilic.lib.neighbours.Neighbours (Fixes #51)






0.6.1 (2021-04-16)


	PR#49 Add min_diff argument to transformations.center_membrane


	PR#48 Add MDAnalysis badge to README and fix typos in the docs


	PR#47 Fixed typos in docs






0.6.0 (2021-03-26)


	PR#44 Refactor the Registration analysis to have a more useful API


	PR#43 Add a method for calculating the lipid enrichment/depletion index


	PR#42 Add a MSD and lateral diffusion analysis, as well as a transformation to perform “nojump” unwrapping.


	PR#39 Add support for assigning lipids to leaflets of highly curved membranes






0.5.0 (2021-03-16)


	PR#38 Add a trajectory transformation for unwrapping broken membranes (Fixes #37)


	PR#36 Add method for projecting areas onto the membrane plane (Fixes #33)


	PR#35 Added a tool for calculating membrane thickness (Fixes #34)


	PR#32 ZThickness.average() now returns a new ZThickness object rather than a NumPy array


	PR#31 SCC.weighted_average() now returns a new SCC object rather than a NumPy array


	PR#30 Add class for plotting projections of membrane properties onto the xy plane.


	PR#29 Added plotting of joint probability distributions or PMFs (Fixed #28).






0.4.0 (2021-03-05)


	PR#26 Added a tool to calculate the thickness of lipids or their tails (Fixes #25)


	PR#24 Added a tool to calculate the coarse-grained order parameter (Fixes #23)


	PR#22 Added a tool to calculate orientation of lipids in a bilayer (Fixes #20)


	PR#21 Added a tool to calculate lipid height in a bilayer (Fixes #19)


	Better description of analysis tools in the docs


	Updated installation instructions, including installing via conda-forge






0.3.2 (2021-02-27)


	Fix typo in requirements






0.3.1 (2021-02-27)


	Add support for numpy 1.20






0.3.0 (2021-02-26)


	Fix neighbour calculation for non-sequential residue indices
Fixes #11


	Added a tool to calculate interleaflet registration






0.2.0 (2021-02-23)


	Improved documentation


	Add method to count number of each neighbour type


	Add functionality to find neighbouring lipids






0.1.0 (2021-02-17)


	Add functionality to find flip-flop events in bilayers


	Add functionality to calculate area per lipid


	Add functionality to find assign lipids to leaflets in a bilayer






0.0.0 (2021-02-08)


	First release on PyPI.
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