
lipyphilic
Release 0.9.0

Paul Smith

Sep 16, 2021

CONTENTS

1 Overview 3

2 Interactive tutorials 5

3 Basic Usage 7

4 Installation 9

5 Citing 11

6 Contents 13

7 Indices and tables 73

Python Module Index 75

Index 77

i

ii

lipyphilic, Release 0.9.0

A Python toolkit for the analysis of lipid membrane simulations

lipyphilic is free software licensed under the GNU General Public License v2 or later (GPLv2+)

CONTENTS 1

https://www.mdanalysis.org
https://anaconda.org/conda-forge/lipyphilic
https://pypi.org/project/lipyphilic
https://readthedocs.org/projects/lipyphilic
https://travis-ci.com/github/p-j-smith/lipyphilic
https://codecov.io/github/p-j-smith/lipyphilic
https://lgtm.com/projects/g/p-j-smith/lipyphilic/context:python
https://pypi.org/project/lipyphilic
https://requires.io/github/p-j-smith/lipyphilic/requirements/?branch=master
https://mybinder.org/v2/gh/p-j-smith/lipyphilic-tutorials/main?filepath=notebooks%2F1-Introduction.ipynb

lipyphilic, Release 0.9.0

2 CONTENTS

CHAPTER

ONE

OVERVIEW

lipyphilic is a set of tools for analysing MD simulations of lipid bilayers. It is an object-oriented Python package built
directly on top of MDAnalysis, and makes use of NumPy and SciPy for efficient computation. The analysis classes are
designed with the same interface as those of MDAnalysis - so if you know how to use analysis modules in MDAnalysis
then learning lipyphilic will be a breeze.

Analysis tools in lipyphilic include: identifying sterol flip-flop events, calculating domain registration over time, and
calculating local lipid compositions. lipyphilic also has three on-the-fly trajectory transformations to i) fix membranes
split across periodic boundaries and ii) perform nojump coordinate unwrapping and iii) convert triclinic coordinates to
their orthorhombic representation.

These tools position lipyphilic as complementary to, rather than competing against, existing membrane analysis soft-
ware such as MemSurfer and FatSlim.

3

https://www.mdanalysis.org/
https://numpy.org/
https://www.scipy.org/
https://userguide.mdanalysis.org/stable/examples/quickstart.html#Analysis
https://github.com/LLNL/MemSurfer
http://fatslim.github.io/

lipyphilic, Release 0.9.0

4 Chapter 1. Overview

CHAPTER

TWO

INTERACTIVE TUTORIALS

We recommend new users take a look out our interactive tutorials. These will show you how to get the most out of
lipyphilic

5

https://mybinder.org/v2/gh/p-j-smith/lipyphilic-tutorials/main?filepath=notebooks%2F1-Introduction.ipynb

lipyphilic, Release 0.9.0

6 Chapter 2. Interactive tutorials

CHAPTER

THREE

BASIC USAGE

Alternatively, check out the Basic Usage example to see how to use lipyphilic, and see the Analysis tools section for
detailed information and examples on each tool.

7

https://lipyphilic.readthedocs.io/en/stable/usage.html
https://lipyphilic.readthedocs.io/en/stable/reference/analyses.html

lipyphilic, Release 0.9.0

8 Chapter 3. Basic Usage

CHAPTER

FOUR

INSTALLATION

The easiest way to install lipyphilic along with its dependencies is through Conda:

conda config --add channels conda-forge
conda install lipyphilic

See the installation guide for futher information.

9

https://docs.conda.io/en/latest/index.html
https://lipyphilic.readthedocs.io/en/stable/installation.html

lipyphilic, Release 0.9.0

10 Chapter 4. Installation

CHAPTER

FIVE

CITING

If you use lipyphilic in your research, please cite our paper:

@article{LiPyphilic2021,
author = {Smith, Paul and Lorenz, Christian D.},
title = {LiPyphilic: A Python Toolkit for the Analysis of Lipid Membrane Simulations}

→˓,
journal = {Journal of Chemical Theory and Computation},
year = {2021},
volume = {17},
number = {9},
pages = {5907-5919},
doi = {10.1021/acs.jctc.1c00447}

}

Please also cite MDAnalysis, on which lipyphilic is built. If you use the Area Per Lipid tool please also cite Freud.

11

https://www.mdanalysis.org/pages/citations/
https://freud.readthedocs.io/en/stable/reference/citing.html

lipyphilic, Release 0.9.0

12 Chapter 5. Citing

CHAPTER

SIX

CONTENTS

6.1 Installation

6.1.1 Conda

The easiest way to install lipyphilic is through the conda-forge channel of Conda:

conda config --add channels conda-forge
conda install lipyphilic

This will install lipyphilic along with all of its dependencies.

If you do not already have Conda installed on your machine, we recommend downloading and installing Miniconda —
a lightweight version of Conda.

6.1.2 PyPI

It’s also possible to install lipyphilic from the Python Package Index. If you already have the necessary dependencies
installed, you can use pip to install lipyphilic:

pip install lipyphilic

Alternatively, you can also install the in-development version with:

pip install https://github.com/p-j-smith/lipyphilic/archive/master.zip

6.1.3 Dependencies

lipyphilic uses MDAnalysis to carry out all analysis calculations, and Freud for performing Voronoi tessellations.

As mentioned above, the simplest way to install these packages, along with lipyphilic, is with Conda. However, it is
also possible to install MDAnalysis and Freud using pip, or from source. See the MDAnalysis and Freud installation
instructions for further information.

13

https://anaconda.org/conda-forge
https://docs.conda.io/en/latest/index.html
https://docs.conda.io/en/latest/miniconda.html
https://pypi.org/
https://raw.githubusercontent.com/p-j-smith/lipyphilic/master/requirements.yml
https://pypi.org/project/pip/
https://www.mdanalysis.org/
https://freud.readthedocs.io/en/stable/
https://docs.conda.io/en/latest/index.html
https://userguide.mdanalysis.org/stable/installation.html
https://freud.readthedocs.io/en/stable/gettingstarted/installation.html

lipyphilic, Release 0.9.0

6.2 Basic Usage

The analysis tools in lipyphilic all require an MDAnalysis Universe as input, so to use lipyphilic you will also need to
import MDAnalysis. The analyses are then performed in the same way as the majority of those in MDAnalysis. For
example, to assign each lipid to the upper or lower leaflet at each frame in a trajectory:

import MDAnalysis as mda
from lipyphilic.lib.assign_leaflets import AssignLeaflets

Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

Find which leaflet each lipid is in at each frame
leaflets = AssignLeaflets(

universe=u,
lipid_sel="name PO4 ROH" # Select headgroup beads in the MARTINI forcefield

)

Select which frames to use and perform the analysis
leaflets.run(start=None, stop=None, step=None) # this will use every frame in the␣
→˓trajectory

And the results will be available as a NumPy array stored in the leaflets.leaflets attribute.

For more details on how to use lipyphilic, check out our interactive tutorials.

6.3 Interactive tutorials

To help you get the most out of lipyphilic, we have created a set of interactive tutorials in the form of Jupyter Notebooks.
There is no need to download or install anything, simply click the link below:

We currently have tutorials on the following topics:

1. Basic usage: Illustrates basic usage of lipyphilic, including how to store results for later usage.
Also shows how to assign lipids to leaflets, which is required for many other analyses.

2. Flip-flop rate: Shows how to use lipyphilic to calculate the rate of cholesterol flip-flop, as well as
identify the frames at which each flip-flop event begins and ends.

3. Local lipid environments: Illustrates how to determine the local lipid environment of each lipid
over time, as well as the enrichment/depletion index.

4. Lipid domains: Shows how to calculate the largest cluster of specific lipids over time. Examples
include finding the largest ganglioside cluster in a neuronal plasma membrane and identifying
the largest domain of Lo lipids in a phase separated membrane.

5. Interleaflet registration: This notebook shows how to calculate the interleaflet registration over
time. The example shows how to calculate the registration of Lo lipids across leaflets.

6. Lateral diffusion: Illustrates how to perform “nojump” trajectory unwrapping with LiPyphilic,
then use the unwrapped coordinates to calculate the mean-squared displacement and lateral
diffusion coefficient of lipids in a membrane.

14 Chapter 6. Contents

https://userguide.mdanalysis.org/stable/universe.html
https://mybinder.org/v2/gh/p-j-smith/lipyphilic-tutorials/main?filepath=notebooks%2F1-Introduction.ipynb

lipyphilic, Release 0.9.0

7. Coarse-grained lipid order parameter: Shows how to calculate the coarse-grained order
parameter, and how to create a two-dimensional projection of these values onto the membrane
plane.

8. Projection plots: Shows how to create two-dimensional projections of arbitrary lipid properties
onto the membrane plane. Examples include projecting local membrane thicknesses calculated
using FATSLiM onto the membrane plane, and projecting the ordered state (Lo and Ld) of lipids
onto the membrane plane.

9. Potential of mean force (PMF): This notebook illustrates how to use lipyphilic to calculate the
height and orientation of sterols in a membrane, and subsequently plot the two-dimensional
PMF of sterol height and orientation.

10. Hidden Markov Models (HMM): Learn how to use the output of lipyphilic to construct HMMs
with HMMLearn. We will create a HMM based on lipid thicknesses to detect Lo and Ld lipids in a
phase separated membrane. The output from this is can be used as input to other
analyses in lipyphilic, such as calculating interleaflet registration or local lipid environments.

6.4 Overview of analysis tools

Here we provide a brief description of the analysis tools currently available in lipyphilic. For more information on each
analysis tool, including details of all optional input parameters see the API . To learn more about how to use lipyphilic,
check out our interactive tutorials.

6.4.1 Assign leaflets: lipyphilic.lib.assign_leaflets

This module provides methods for assigning lipids to leaflets in a bilayer. Leaflet assignment is based on the distance
in z from a lipid the midpoint of the bilayer. Lipids may be assigned to the upper leaflet (indicated by 1), the lower
leaflet (-1) or the bilayer midplane (0).

Below we see how to assign lipids to the upper or lower leaflet of a MARTINI bilayer:

import MDAnalysis as mda
from lipyphilic.lib.assign_leaflets import AssignLeaflets

Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

Find which leaflet each lipid is in at each frame
leaflets = AssignLeaflets(
universe=u,
lipid_sel="name PO4 ROH"

)

Select which frames to use and perform the analysis
leaflets.run(start=None, stop=None, step=None) # this will use every frame in the␣
→˓trajectory

The results are stored as a NumPy array of shape (n_lipids, n_frames) in the leaflets.leaflets attribute.

6.4. Overview of analysis tools 15

http://fatslim.github.io/
https://hmmlearn.readthedocs.io/en/latest/
http://cgmartini.nl/

lipyphilic, Release 0.9.0

If you have used a different force field, you simply need to change the lipid_sel to select the relevant headgroup
atoms of your lipids. See the MDAnalysis selection language for more info on how to select atoms.

By default, lipids are only allowed to be in the upper (1) or lower (-1) leaflet. See lipyphilic.lib.
assign_leaflets for more information on selecting which molecules are allowed in the midplane.

Note: Assignment of lipids to leaflets is not in itself useful, but it is required in order to calculate, for example, area
per lipid, interleaflet correlations, and flip-flop rates.

6.4.2 Flip-flop: lipyphilic.lib.flip_flop

This module provides methods for detecting the flip-flop of molecules in a lipid bilayer. A flip-flop occurs when a
molecule - typically a sterol - moves from one leaflet of a bilayer into the opposing leaflet.

To find all flip-flop events, we first should assign lipids to leaflets as seen in the above example, then:

import MDAnalysis as mda
from lipyphilic.lib.flip_flop import FlipFlop

Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

flip_flops = FlipFlop(
universe=u,
lipid_sel="name ROH", # select molecules that may flip-flop
leaflets=leaflets.filter_leaflets("name ROH")

)

flip_flops.run(start=None, stop=None, step=None)

The results are stored as a NumPy array of shape (n_flip_flops, 4) in the flip_flops.flip_flops attribute. Each
row is a single flip-flop event, and the four columns correspond to: the residue index of the flip-flopping molecule; the
frame at which the molecule left its original leaflet; the frame at which it entered its new leaflet; the leaflet ID to which
it moves.

See lipyphilic.lib.flip_flop for more information on how flip-flop is detected and options such as specifying
how long a molecule must residue in the new leaflet for the flip-flop to be considered successful.

6.4.3 Interlealet registration: lipyphilic.lib.registration

This module provides methods for determining registration of leaflets in a bilayer. Registration is defined by the pearson
correlation coefficient of molecular densities in the two leaflets. This is an implementation of the method described by
Thallmair et al. (2018).

To calculate the interleaflet correlation of cholesterol, we first need to calculate which leaflet each lipid is in at each frame
using lipyphilic.lib.assign_leaflets.AssignLeaflets. Then we pass atom selections for which density
correlations will be calculated, along with the relevant leaflet membership data, to Registration:

import MDAnalysis as mda
from lipyphilic.lib.registration import Registration

Load an MDAnalysis Universe
(continues on next page)

16 Chapter 6. Contents

https://userguide.mdanalysis.org/stable/selections.html
https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b01877

lipyphilic, Release 0.9.0

(continued from previous page)

u = mda.Universe('production.tpr','production.xtc')

registration = Registration(
upper_sel="resname CHOL and name ROH",
lower_sel="resname CHOL and name ROH",
leaflets=leaflets.filter_leaflets("name ROH")

)

registration.run(start=None, stop=None, step=None)

The results are stored in a NumPy array of shape (n_frames), containing the pearson correlation coefficient of choles-
terol densities in the two leaflets. The data are accessible via the registration.registration attribute.

As well as calculating registration of lipid species across the two leaflets, it is also possible to calculate the registration
of arbitrary user-defined values across the two leaflets. For example, if you have created a Hidden Markov Model
to assign lipids to the Ld or Lo phase, you can calculate the registration of Lo lipids across the two leaflets. See
lipyphilic.lib.registration for more details.

6.4.4 Neighbours: lipyphilic.lib.neighbours

This module provides methods for finding neighbouring lipids in a bilayer. Lipids are neighbours if they are within a
user-defined cutoff of one another.

Below we see how to find all neighbours in a MARTINI bilayer based on the ‘GL1’ and ‘GL2’ beads of phospholipids
and the ‘ROH’ bead of sterols, using a cutoff of 12 Å:

import MDAnalysis as mda
from lipyphilic.lib.neighbours import Neighbours

Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

Find neighbouring lipids
neighbours = Neighbours(
universe=u,
lipid_sel="name GL1 GL2 ROH",
cutoff=12.0

)

neighbours.run(start=None, stop=None, step=None)

The results are stored in the neighbours.neighbours attribute as a NumPy array of SciPy sparse matrices (of type
scipy.sparse.csc_matrix). Each sparse matrix contains the lipid neighbours at a given frame.

Tip: Once the neighbour matrices has been generated, the local lipid compositions or the largest lipids cluster at each
frame can be readily.

See lipyphilic.lib.neighbours for more information on this module, including how to calculate local lipid com-
positions or the lipid enrichment/depletion index, and how to find the largest cluster of a given lipid species over time.

6.4. Overview of analysis tools 17

https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00828
https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00828

lipyphilic, Release 0.9.0

6.4.5 Area per lipid: lipyphilic.lib.area_per_lipid

This module provides methods for calculating the area per lipid. Areas are calculated via a 2D Voronoi tessellation,
using the locality module of Freud to perform the tessellation of atomic positions. See Lukat et al. (2013) a thorough
description of calculating the area per lipid via Voronoi tessellations.

Once lipids have been assigned to leaflets, the area per lipid can be calculated as follows:

import MDAnalysis as mda
from lipyphilic.lib.area_per_lipid import AreaPerLipid

Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

areas = AreaPerLipid(
universe=u,
lipid_sel="name GL1 GL2 ROH", # assuming we're using the MARTINI forcefield
leaflets=leaflets.leaflets

)

areas.run(start=None, stop=None, step=None)

The above will use GL1 and GL2 beads to calculate the area of each phospholipid, and the ROH bead to calculate the
area of each sterol.

For a more complete description of calculating the area per lipid, and the API of the analysis class, see lipyphilic.
lib.area_per_lipid .

6.4.6 Lipid order parameter — lipyphilic.lib.order_parameter

This module provides methods for calculating the coarse-grained orientational order parameter of acyl tails in a lipid
bilayer. The coarse-grained order parameter, 𝑆𝐶𝐶 , is a measure of the degree of ordering of an acyl tail, based on the
extent to which the vector connecting two consecutive tail beads is aligned with the membrane normal.

See Seo et al. (2020) for a definition of 𝑆𝐶𝐶 and Piggot et al. (2017) for an excellent discussion on acyl tail order
parameters in molecular dynamics simulations.

To calculate 𝑆𝐶𝐶 , we need to provide an atom selection for the beads in a single tail of lipids in the bilayer — that is,
either the sn1 or sn2 tails, not both. If we have performed a MARTINI simulation, we can calculate the 𝑆𝐶𝐶 of all sn1
tails of phospholipids as follows:

import MDAnalysis as mda
from lipyphilic.lib.order_parameter import SCC

Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

scc = SCC(
universe=u,
tail_sel="name ??A"

)

The above makes use of the powerful MDAnalysis selection language. It will select beads such as C1A, C2A, D2A etc.
This makes it simple to quickly calculate 𝑆𝐶𝐶 for the sn1 tails of all species in a bilayer.

18 Chapter 6. Contents

https://freud.readthedocs.io/en/stable/index.html
https://pubs.acs.org/doi/full/10.1021/ci400172g
https://pubs.acs.org/doi/full/10.1021/acs.jpclett.0c01317
https://pubs.acs.org/doi/full/10.1021/acs.jctc.7b00643
https://userguide.mdanalysis.org/stable/selections.html

lipyphilic, Release 0.9.0

To see how to calculate 𝑆𝐶𝐶 using local membrane normals to define the molecular axes, as well as the full API of the
class, see lipyphilic.lib.order_parameter.

6.4.7 Lipid 𝑧 angles: lipyphilic.lib.z_angles

This module provides methods for calculating the angle lipids make with the positive 𝑧 axis. If we define the orientation
of MARTINI cholesterol as the angle between the 𝑧-axis and the vector from the the ‘R5’ bead to the ‘ROH’ bead, we
can calculate the orientation of each cholesterol molecule as follows:

import MDAnalysis as mda
from lipyphilic.lib.z_angles import ZAngles

Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

z_angles = ZAngles(
universe=u,
atom_A_sel="name R5",
atom_B_sel="name ROH"

)

z_angles.run(start=None, stop=None, step=None)

The results are stored in a numpy.ndarray of shape (n_residues, n_lipids) in the z_angles.z_angles attribute.

For more information on this module, including how to return the angles in radians rather than degrees, see
lipyphilic.lib.z_angles.

6.4.8 Lipid 𝑧 positions: lipyphilic.lib.z_positions

This module provides methods for calculating the height in 𝑧 of lipids from the bilayer center.

If we have used the MARTINI forcefield to study a phospholipid/cholesterol mixture, we can calculate the height of
cholesterol in the bilayer as follows:

import MDAnalysis as mda
from lipyphilic.lib.z_positions import ZPositions

Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

z_positions = ZPositions(
universe=u,
lipid_sel="name GL1 GL2 ROH",
height_sel="name ROH",
n_bins=10

)

z_positions.run(start=None, stop=None, step=None)

lipid_sel is an atom selection that covers all lipids in the bilayer. This is used for calculating the membrane midpoint.
height_sel selects which atoms to use for calculating the height of each lipid.

6.4. Overview of analysis tools 19

lipyphilic, Release 0.9.0

Local membrane midpoints are calculated by creating a grid of membrane patches, with the number of grid points
controlled with the n_bins parameter. The distance in 𝑧 of each lipid to its local midpoint is then calculated.

Data are returned in a numpy.ndarray of shape (n_residues, n_frames). See lipyphilic.lib.z_positions for
more information on this module including the full API of the class.

6.4.9 Lipid 𝑧 thickness: lipyphilic.lib.z_thickness

This module provides methods for calculating the thickness, in 𝑧, of lipid tails. This is defined as the maximum distance
in 𝑧 between to atoms in a tail.

If we have used the MARTINI forcefield to study a DPPC/DOPC/cholesterol mixture, we can calculate the thickness
of DPPC and DOPC sn1 tails, as well as the thickness of cholesterol, as follows:

import MDAnalysis as mda
from lipyphilic.lib.z_positions import ZThickness

Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

z_thickness = ZThickness(
universe=u,
lipid_sel="(name ??1 ??A) or (resname CHOL and not name ROH)"

)

z_thickness.run()

The above makes use of the powerful MDAnalysis atom selection language to select the DPPC and DOPC sn1 tails
along with cholesterol.

The thickness data are stored in a numpy.ndarray of shape (n_residues, n_frames) in the z_thickness.
z_thickness attribute. See lipyphilic.lib.z_thickness for the full API of the class.

6.4.10 Membrane 𝑧 thickness: lipyphilic.lib.memb_thickness

This module provides methods for calculating the bilayer thickness. It is defined as the peak-to-peak distance of lipid
headgroup density in 𝑧.

Lipids must first be assigned to the upper and lower leaflets. This can be done with the class lipyphilic.lib.
assign_leaflets.AssignLeaflets. Then, to calculate the membrane thickness we need to define which atoms
to treat as headgroup atoms and pass the leaflet membership information to MembThickness. If we have studied a
DPPC/DOPC/cholesterol mixture with MARTINI, we could calculate the membrane thickness as follows:

import MDAnalysis as mda
from lipyphilic.lib.z_positions import ZThickness

Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

memb_thickness = MembThickness(
universe=u,
leaflets=leaflets.filter_leaflets("resname DOPC and DPPC"), # exclude cholesterol␣

→˓from thickness calculation
lipid_sel="resname DPPC DOPC and name PO4"

(continues on next page)

20 Chapter 6. Contents

lipyphilic, Release 0.9.0

(continued from previous page)

)

memb_thickness.run()

The results are then available in the memb_thickness.memb_thickness attribute as a numpy.ndarray.

For more information on calculating membrane thickness, including options to calculating local membrane thicknesses
rather than a single global thickness, see lipyphilic.lib.memb_thickness.

6.4.11 Lateral diffusion lipyphilic.lib.lateral_diffusion

This module contains methods for calculating the mean squared displacement (MSD) and lateral diffusion coefficient,
𝐷𝑥𝑦 ,of lipids in a bilayer.

The MSD of all lipids in a DPPC/DOPC/cholesterol MARTINI bilayer can be calculated using lipyphilic.lib.
lateral_diffusion.MSD:

import MDAnalysis as mda
from lipyphilic.lib.lateral_diffusion import MSD

Load an MDAnalysis Universe
u = mda.Universe('production.tpr','production.xtc')

msd = MSD(
universe=u,
lipid_sel="name PO4 ROH"

)

msd.run()

The MSD of each lipid is then available in the msd.msd attribute as a numpy.ndarray, and the lagtimes are stored in
the msd.lagtimes attribute.

For more information on this module, including how to calculate the lateral diffusion coefficient, see lipyphilic.
lib.lateral_diffusion.

6.4.12 Plotting utilities: lipyphilic.lib.plotting

lipyphilic can produce joint probability density plots (or PMFs if a temperature is provided), as well as density maps
of membrane properties projected onto the membrane plane. The former may be used to plot, for example, the PMF
of cholesterol orientation and height in a bilayer. The latter may be used to generate plots of, for example, the area per
lipid as a function of 𝑥𝑦 in the membrane plane.

See lipyphilic.lib.plotting for the full API of lipyphilic.lib.plotting.JointDensity and
lipyphilic.lib.plotting.ProjectionPlot.

6.4. Overview of analysis tools 21

lipyphilic, Release 0.9.0

6.4.13 On-the-fly transformations lipyphilic.transformations

lipyphilic contains a module for applying on-the-fly transformation to atomic coordinates while iterating over a trajec-
tory. These are available in the module lipyphilic.transformations.

There are three transformations available in lipyphilic:

1. lipyphilic.transformations.nojump, which prevents atoms from jumping across periodic
boundaries. This is useful when calculating the lateral diffusion of lipids.

2. lipyphilic.transformations.center_membrane, which can take a membrane that is split
across periodic boundaries, make it whole and center it in the box.

3. lipyphilic.transformations.triclinic_to_orthorhombic, which transforms triclinic coordinates
into their orthorhombic representation.

See lipyphilic.transformations for full details on these transformations including how to apply them to your
trajectory.

6.5 API

See the following pages for the full API of each tool:

6.5.1 Assign leaflets — lipyphilic.lib.assign_leaflets

Author Paul Smith

Year 2021

Copyright GNU Public License v2

This module provides methods for assigning lipids to leaflets in a bilayer.

Assigning leaflets in planar bilayers

The class lipyphilic.lib.assign_leaflets.AssignLeaflets assigns each lipid to a leaflet based on the dis-
tance in z to the midpoint of the bilayer. Lipids may be assigned to the upper leaflet (indicated by 1), the lower leaflet
(-1) or the bilayer midplane (0).

Input

Required:

• universe : an MDAnalysis Universe object

• lipid_sel : atom selection for all lipids in the bilayer, including e.g. sterols

Options:

• midplane_sel : atom selection for lipid that may occupy the midplane

• midplane_cutoff : atoms within this distance from the midpoint are considered to be the midplane

• n_bins : split the membrane into n_bins * n_bins patches, and calculate local membrane midpoints for each
patch

22 Chapter 6. Contents

lipyphilic, Release 0.9.0

Output

• leaflets : leaflet to which each lipid is assigned at each frame

Leaflet data are returned in a numpy.ndarray, where each row corresponds to an individual lipid and each column
corresponds to an individual frame, i.e. leaflets[i, j] refers to the leaflet of lipid i at frame j. The results are accessible
via the AssignLeaflets.leaflets attribute.

Example usage of AssignLeaflets

An MDAnalysis Universe must first be created before using AssignLeaflets:

import MDAnalysis as mda
from lipyphilic.lib.assign_leaflets import AssignLeaflets

u = mda.Universe(tpr, trajectory)

If we have used the MARTINI forcefield to study a phospholipid/cholesterol mixture, we can assign lipids and choles-
terol to the upper and lower as follows:

leaflets = AssignLeaflets(
universe=u,
lipid_sel="name GL1 GL2 ROH"

)

We then select which frames of the trajectory to analyse (None will use every frame) and choose to display a progress
bar (verbose=True):

leaflets.run(
start=None,
stop=None,
step=None,
verbose=True

)

The results are then available in the leaflets.leaflets attribute as a numpy.ndarray. Each row corresponds to
an individual lipid and each column to an individual frame, i.e leaflets.leaflets[i, j] contains the leaflet membership
of lipid i at frame j. Lipid i, at frame j, is in the upper leaflet if leaflets.leaflets[i, j]==1 and in the lower leaflet if
leaflets.leaflets[i, j]==-1.

Allowing lipids in the midplane

The above example will assign every lipid (including sterols) to either the upper or lower leaflet. To allow cholesterol
to be in the midplane, we can provide a midplane_sel and midplane_cutoff to AssignLeaflets:

leaflets = AssignLeaflets(
universe=u,
lipid_sel="name GL1 GL2 ROH",
midplane_sel="resname CHOL and name ROH C2",
midplane_cutoff=12.0

)

6.5. API 23

lipyphilic, Release 0.9.0

A cholesterol molecule that has both its ROH and C2 atoms within 12 Å of membrane midpoint will be assigned to the
midplane, i.e. for cholesterol i at frame j that is in the midplane, leaflets.leaflets[i, j]==0.

Changing the resolution of the membrane grid

The first two examples compute a global membrane midpoint based on all the atoms of the lipids in the membrane.
Lipids are then assigned a leaflet based on their distance in 𝑧 to this midpoint. This is okay for planar bilayers, but can
lead to incorrect leaflet classification in membranes with undulations. If your bilayer has undulations, AssignLeaflets
can account for this by creating a grid in 𝑥𝑦 of your membrane, calculating the local membrane midpoint in each patch,
then assigning leaflet membership based on distance in 𝑧 to the local membrane midpoint. This is done through use of
n_bins:

leaflets = AssignLeaflets(
universe=u,
lipid_sel="name GL1 GL2 ROH",
midplane_sel="resname CHOL and name ROH C2",
midplane_cutoff=12.0,
n_bins=10

)

In this example, the membrane will be split into a 10 x 10 grid and a lipid assigned a leaflet based on the distance to
the midpoint of the patch the lipid is in.

Assigning leaflets in membranes with high curvature

If your membrane is a vesicle or bilayer with very large undulations, such as in a buckled membrane, lipyphilic.
lib.assign_leaflets.AssignLeaflets will assign lipids to the wrong leaflet

The class lipyphilic.lib.assign_leaflets.AssignCurvedLeaflets can be used in these scenaries to assign
each lipid to a leaflet using MDAnalysis’ Leaflet Finder. Lipids may still be assigned to the upper/outer leaflet (indicated
by 1), the lower/inner leaflet (-1) or the membrane midplane (0).

Input

Required:

• universe : an MDAnalysis Universe object

• lipid_sel : atom selection for all lipids in the bilayer, including e.g. sterols

• lf_cutoff : distance cutoff below which two neighbouring atoms will be considered to be in the same leaflet.

Options:

• midplane_sel : atom selection for lipid that may occupy the midplane

• midplane_cutoff : atoms further than this distance from the either leaflet are considered to be the midplane

• pbc : bool, specifying whether or not to take periodic boundaries into account

24 Chapter 6. Contents

https://aip.scitation.org/doi/pdf/10.1063/1.4808077
https://docs.mdanalysis.org/1.0.0/documentation_pages/analysis/leaflet.html

lipyphilic, Release 0.9.0

Output

• leaflets : leaflet to which each lipid is assigned at each frame

Leaflet data are returned in a numpy.ndarray, where each row corresponds to an individual lipid and each column
corresponds to an individual frame, i.e. leaflets[i, j] refers to the leaflet of lipid i at frame j. The results are accessible
via the AssignLeaflets.leaflets attribute.

Example usage of AssignCurvedLeaflets

An MDAnalysis Universe must first be created before using AssignCurvedLeaflets:

import MDAnalysis as mda
from lipyphilic.lib.assign_leaflets import AssignLeaflets

u = mda.Universe(tpr, trajectory)

If we have used the MARTINI forcefield to study a phospholipid/cholesterol mixture, we can assign lipids and choles-
terol to the upper and lower as follows:

leaflets = AssignCurvedLeaflets(
universe=u,
lipid_sel="name GL1 GL2 ROH",
lf_cutoff=12.0,
midplane_sel="name ROH",
midplane_cutoff=10.0

)

We then select which frames of the trajectory to analyse (None will use every frame) and choose to display a progress
bar (verbose=True):

leaflets.run(
start=None,
stop=None,
step=None,
verbose=True

)

This will first use MDAnalysis’ Leaflet Finder to assign all lipids, excluding those in midplane_sel, to either the
upper or lower leaflet. The LeafletFinder will consider two lipids to be in the same leaflet if they have GL1 or GL2
atoms within 12 Å of one another. From this, we find the two largest leaflets, then assign the remaining phospholipids
to a leaflet based on whichever leaflet they are closest to.

The phospholipids do not change leaflets throughtout the trajectory, only cholesterol — as specified with
midplane_sel and midplane_cutoff. Thus, at each frame, each cholesterol is assinged a leaflet based on it’s min-
imum distance to the leaflet. In the above example, if a cholesterol is within 10 Å of one leaflet it is assigned to that
leaflet. If it is within 10 Å of neither or both leaflets then it is assigned to the midplane.

The results are then available in the leaflets.leaflets attribute as a numpy.ndarray. Each row corresponds to
an individual lipid and each column to an individual frame, i.e leaflets.leaflets[i, j] contains the leaflet membership
of lipid i at frame j. Lipid i, at frame j, is in the upper leaflet if leaflets.leaflets[i, j]==1 and in the lower leaflet if
leaflets.leaflets[i, j]==-1.

6.5. API 25

https://docs.mdanalysis.org/1.0.0/documentation_pages/analysis/leaflet.html

lipyphilic, Release 0.9.0

The classes and their methods

class lipyphilic.lib.assign_leaflets.AssignLeaflets(universe, lipid_sel, midplane_sel=None,
midplane_cutoff=None, n_bins=1)

Assign lipids in a bilayer to the upper leaflet, lower leaflet, or midplane.

Set up parameters for assigning lipids to a leaflet.

Parameters

• universe (Universe) – MDAnalysis Universe object

• lipid_sel (str) – Selection string for the lipids in a membrane. The selection should cover all
residues in the membrane, including cholesterol.

• midplane_sel (str, optional) – Selection string for residues that may be midplane. Any
residues not in this selection will be assigned to a leaflet regardless of its proximity to the
midplane. The default is None, in which case all lipids will be assigned to either the upper
or lower leaflet.

• midplane_cutoff (float, optional) – Minimum distance in z an atom must be from the mid-
plane to be assigned to a leaflet rather than the midplane. The default is 0, in which case all
lipids will be assigned to either the upper or lower leaflet. Must be non-negative.

• n_bins (int, optional) – Number of bins in x and y to use to create a grid of membrane patches.
Local membrane midpoints are computed for each patch, and lipids assigned a leaflet based
on the distance to their local membrane midpoint. The default is 1, which is equivalent to
computing a single global midpoint.

Note: Typically, midplane_sel should select only sterols. Other lipids have flip-flop rates that are currently
unaccessible with MD simulations, and thus should always occupy either the upper or lower leaflet.

class lipyphilic.lib.assign_leaflets.AssignCurvedLeaflets(universe, lipid_sel, lf_cutoff=15,
midplane_sel=None,
midplane_cutoff=None, pbc=True)

Assign lipids in a membrane to the upper leaflet, lower leaflet, or midplane.

Set up parameters for assigning lipids to a leaflet.

Parameters

• universe (Universe) – MDAnalysis Universe object

• lipid_sel (str) – Selection string for the lipids in a membrane. The selection should cover all
residues in the membrane, including cholesterol.

• lf_cutoff (float, optional) – Cutoff to pass to MDAnalysis.analysis.leaflet.LeafletFinder.
Lipids closer than this cutoff distance apart will be considered to be in the same leaflet.
The default is 15.0

• midplane_sel (str, optional) – Selection string for residues that may be midplane. Any
residues not in this selection will be assigned to a leaflet at ever frame. The default is None,
in which case no molecules will be considered to be in the midplane.

• midplane_cutoff (float, optional) – Lipids with atoms selected in midplane_sel that are
within this distance of a leaflet will be to that leaflet. If a molecule is within this distance of
neither or both leaflets, it will be assigned to the midplane. The default is None.

• pbc (bool, optional) – Take periodic boundary conditions into account. The default is True.

26 Chapter 6. Contents

lipyphilic, Release 0.9.0

Note: Typically, midplane_sel should select only sterols. Other lipids have flip-flop rates that are currently
unaccessible with MD simulations, and thus should always occupy either the upper or lower leaflet.

filter_leaflets(lipid_sel=None, start=None, stop=None, step=None)
Create a subset of the leaflets results array.

Filter either by lipid species or by the trajectory frames, or both.

Parameters

• lipid_sel (str, optional) – MDAnalysis selection string that will be used to select a subset
of lipids present in the leaflets results array. The default is None, in which case data for all
lipids will be returned.

• start (int, optional) – Start frame for filtering. The default is None, in which case the first
frame is used as the start.

• stop (int, optional) – Stop frame for filtering. The default is None, in which case the final
frame is used as the stop.

• step (int, optional) – Number of frames to skip when filtering frames. The deafult is None,
in which case all frames between start and stop are used.

6.5.2 Flip-flop — lipyphilic.lib.flip_flop

Author Paul Smith

Year 2021

Copyright GNU Public License v2

This module provides methods for finding flip-flop events in a lipid bilayer.

A flip-flop event occurs when a molecule - typically a sterol - moves from one leaflet of a bilayer into the opposing
leaflet.

The class lipyphilic.lib.flip_flop.FlipFlop finds the frames at which a flip-flop event begins and ends, as
well as the direction of travel (upper-to-lower or lower-to-upper). FlipFlop can also determine whether each event
was successful (the molecule resides in the opposing leaflet for at least a given length of time), or not (the molecule
went to the midplane but returned to its original leaflet).

See Baral et al. (2020) for further discussion on flip-flop in lipid bilayers, including the affect on the flip-flop rate of
the buffer size used to assign molecules to the midplane of the bilayer.

Input

Required:

• universe : an MDAnalysis Universe object.

• lipid_sel : atom selection for atoms to use in detecting flip-flop

• leaflets : leaflet membership (-1: lower leaflet, 0: midplane, 1: upper leaflet) of each lipid in the membrane
at each frame

6.5. API 27

https://www.sciencedirect.com/science/article/pii/S0009308420300980

lipyphilic, Release 0.9.0

Output

• resindex : residue index of a flip-flopping molecule

• flip_flop_start_frame : final frame at which the molecule was present in its original leaflet

• flip_flop_end_frame : first frame at which the molecule is present in the new leaflet

• moves_to : direction of travel of the molecule: equal to 1 if the upper leaflet is the new lealet, equal to -1 if the
lower leaflet is the new leaflet

Flip-flop data area returned in a numpy.ndarray, on a “one line, one observation” basis and can be accessed via
FlipFlop.flip_flops:

flip_flops = [
[

<resindex (0-based)>,
<end_frame (0-based)>,
<start_frame (0-based)>,
<moves_to>

],
...

]

moves_to is equal to 1 or -1 if the molecule flip-flops into the upper or the lower leaflet, respectively.

Additionaly, the success or failure of each flip-flop event is stored in the attribute FlipFlop.flip_flop_success.

Example usage of FlipFlop

An MDAnalysis Universe must first be created before using FlipFlop:

import MDAnalysis as mda
from lipyphilic.lib.assign_leaflets import AssignLeaflets
from lipyphilic.lib.flip_flop import FlipFlop

u = mda.Universe(tpr, trajectory)

Then we need to know which leaflet each lipid is in at each frame. This may be done using lipyphilic.lib.
assign_leaflets.AssignLeaflets:

leaflets = AssignLeaflets(
universe=u,
lipid_sel="name GL1 GL2 ROH" # assuming we are using the MARTINI forcefield
midplane_sel="name ROH", # only cholesterol is allowed to flip-flop
midplane_cutoff=8.0, # buffer size for assigning molecules to the midplane

)
leaflets.run()

The leaflet data are stored in the leaflets.leaflets attribute. We can now create our FlipFlop object:

flip_flop = FlipFlop(
universe=u,
lipid_sel="name ROH",
leaflets=leaflets.filter_leaflets("name ROH") # pass only the relevant leaflet data

)

28 Chapter 6. Contents

lipyphilic, Release 0.9.0

We then select which frames of the trajectory to analyse (None will use every frame):

flip_flop.run(
start=None,
stop=None,
step=None

)

The results are then available in the flipflop.flip_flop attribute as a numpy.ndarray. Each row corresponds to
an individual flip-flop event, and the four columns correspond, respectively, to the molecule resindex, flip-flop start
frame, flip-flop end frame, and the leaflet in which the molecule resides after the flip-flop.

Specify minimum residence time for successful flip-flops

We can also specify the minumum number of frames a molecule must reside in its new leaflet for the flip-flop to be
considered successful. We do this using the frame_cutoff parameter:

flip_flop = FlipFlop(
universe=u,
lipid_sel="name ROH",
leaflets=leaflets.filter_leaflets("name ROH")
frame_cuotff=10,

)

With frame_cutoff=10, a molecule must remain in its new leaflet for at least 10 consecutive frames for the flip-flop to
be considered successful. If this condition is not met, the flip-flop event is recorded as failing.

Calculating the flip-flop rate

The flip-flop rate can be calculatd directly from the number of successfull flip-flop evetns, which itself can be calculated
as:

n_successful = sum(flip_flop.flip_flop_success == "Success")

The rate is then given by the total number of successful flip-flops divided by the total simulations time and the number
of molecules of the translocating species.

The class and its methods

class lipyphilic.lib.flip_flop.FlipFlop(universe, lipid_sel, leaflets, frame_cutoff=1)
Find flip-flop events in a lipid bilayer.

Set up parameters for finding flip-flop events.

Parameters

• universe (Universe) – MDAnalysis Universe object

• lipid_sel (str) – Selection string for atoms to use in detecting flip-flop.

• leaflets (numpy.ndarray (n_lipids„ n_frames)) – An array of leaflet membership for each
lipid as each frame, in which: -1 corresponds to the lower leaflet; 1 corresponds to the upper
leaflet; and 0 corresponds to the midplane.

6.5. API 29

lipyphilic, Release 0.9.0

• frame_cutoff (int, optional) – To be counted as a successful flip-flop, a molecule must reside
in its new leaflet for at least ‘frame_cutoff’ consecutive frames. The default is 1, in which
case the molecule only needs to move to the opposing leaflet for a single frame for the flip-flop
to be successful.

Tip: Leaflet membership can be determined using lipyphilic.lib.assign_leaflets.AssignLeaflets.

6.5.3 Registration — lipyphilic.lib.registration

Author Paul Smith

Year 2021

Copyright GNU Public License v2

This module provides methods for determining registration of leaflets in a bilayer.

The degree of registration is calculated as the pearson correlation coefficient of densities in the upper and lower leaflets.
First, the 2D density of each leaflet, 𝐿, is calculated:

𝜌(𝑥, 𝑦)𝐿 =

∞∫︁
−∞

1√
2𝜋𝜎

exp

(︃
−1

2

(︂
𝑥′ − 𝑥

𝜎

)︂2
)︃
𝑑𝑥′𝑑𝑦′

where the (𝑥, 𝑦) positions of lipid atoms in leaflet 𝐿 are binned into two-dimensional histograms, then convolved with
a circular Gaussian density of standard deviation 𝜎. 𝐿 is either the upper (𝑢) or lower (𝑙) leaflet.

The correlation between the two leaflets, 𝑟𝑢/𝑙, is then calculated as the pearson correlation coefficient between 𝜌(𝑥, 𝑦)𝑢
and 𝜌(𝑥, 𝑦)𝑙, where values of:

• 1 correspond to perfectly registered

• −1 correspond to perfectly anti-registered

For more information on interleaflet registration in bilayers see Thallmair et al. (2018).

Input

Required:

• universe : an MDAnalysis Universe object.

• upper_sel : atom selection for lipids in the upper leaflet to use in the registration calculation

• lower_sel : atom selection for lipids in the lower leaflet to use in the registration calculation

• leaflets : leaflet membership (-1: lower leaflet, 0: midplane, 1: upper leaflet) of each lipid in the membrane.

Optional:

• filter_by : boolean mask for determining which lipids to include in the registration calculation

• n_bins : the number of bins to use in x and y for the 2D histogram

• gaussian_sd : the standard deviation of the circular Gaussian to convole with the grid densities

30 Chapter 6. Contents

https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b01877

lipyphilic, Release 0.9.0

Output

• registration : the degree of interleaglet registration at each frame

The data are stored in the registration.registration attribute, containing the pearson correlation coefficient of
the two-dimensional leaflet densities at each frame.

Example usage of Registration

An MDAnalysis Universe must first be created before using Registration:

import MDAnalysis as mda
from lipyphilic.lib.registration import Registration

u = mda.Universe(tpr, trajectory)

Then we need to know which leaflet each lipid is in at each frame. This may be done using lipyphilic.lib.
assign_leaflets.AssignLeaflets:

leaflets = AssignLeaflets(
universe=u,
lipid_sel="name GL1 GL2 ROH" # assuming we are using the MARTINI forcefield

)
leaflets.run()

The leaflets data are stored in the leaflets.leaflets attribute. We can now create our Registration object by passing
our lipyphilic.lib.assign_leaflets.AssignLeaflets object to Registration along with atom selections
for the lipids:

registration = Registration(
upper_sel="resname CHOL and name ROH",
lower_sel="resname CHOL and name ROH",
leaflets=leaflets.filter_leaflets("resname CHOL and name ROH")

)

To calculate the interleaflet correlation of cholesterol molecules using their ROH beads we then need to use the run()
method. We select which frames of the trajectory to analyse (None will use every frame) and choose to display a
progress bar (verbose=True):

registration.run(
start=None,
stop=None,
step=None,
verbose=True

)

The results are then available in the registration.registration attribute as a numpy.ndarray. Again, 1 corre-
sponds to the leaflets being perfectly in register and −1 corresponds to the leaflets being perfectly anti-registered.

6.5. API 31

lipyphilic, Release 0.9.0

Selecting a subset of lipids for the registration analysis

The previous example will compute the registration of cholesterol across the upper and lower leaflets. In, for example,
simulations of phase-separation domains, it is useful to know the registration of liquid-ordered domains (regardless of
the species in the domain) rather than the registrtion of specific lipid species.

If we have a 2D array, ‘lipid_order_data’, that contains information on whether each lipid is in the liquid-disordered
phase or the liquid-ordered phase at each frame, we can used this to calculate the registration of ordered domains. The
array must take the shape ‘(n_residues, n_frames)’, and in the below example ‘lipid_order_data[i, j]’ would be equal
to -1 if lipid ‘i’ is liquid-disordered at frame ‘j’ and equal to 1 if it is liquid-ordered:

registration = Registration(
upper_sel="name PO4 ROH",
lower_sel="name PO4 ROH",
leaflets=leaflets.leaflets,
filter_by=lipid_order_data == 1

)

If we have a ternary mixture of DPPC/DOPC/Cholesterol, we can also specifcy that we wish to consider only DPPC
and cholesterol in the liquid-ordered phase:

registration = Registration(
upper_sel="(resname CHOL and name ROH) or (resname DPPC and name PO4)",
lower_sel="(resname CHOL and name ROH) or (resname DPPC and name PO4)",
leaflets=leaflets.filter_leaflets("resname CHOL DPPC"),
filter_by=lipid_order_data == 1

)

Changing the resolution of the 2D grid

By default, the lipid positions of each leaflet are binned into a two-dimensional histogram using 𝑛_𝑏𝑖𝑛𝑠𝑥 = ⌈𝑥⌉, where
𝑛_𝑏𝑖𝑛𝑠𝑥 is the numer of bins in 𝑥 and ⌈𝑥⌉ is the size of system in 𝑥 rounded up to the nearest integer. This gives a grid
resolution of 1 Å.

It is also possible to specify the number of bins to use for binning the data:

registration = Registration(
upper_sel="resname CHOL and name ROH",
lower_sel="resname CHOL and name ROH",
leaflets=leaflets.filter_leaflets("resname CHOL"),
n_bins=100

)

This will use 100 bins for creating the two-dimensional histogram. Fewer bins will result in a performance increase
but at the cost of spatial resolution. For all but the largest systems, the default of 1 Å is appropriate. If your system is
larger than a few hundred nm in one dimension, you will likely want to set n_bins to 2000 or less.

32 Chapter 6. Contents

lipyphilic, Release 0.9.0

Changing the standard deviation of the circular Gaussian density

The defualt value of 𝜎 is 15, which is the value used by Thallmair et al. (2018) for determining interleaflet cholesterol
correlations. This deault value can be changed using the gaussian_sd parameter:

registration = Registration(
upper_sel="resname CHOL and name ROH",
lower_sel="resname CHOL and name ROH",
leaflets=leaflets.filter_leaflets("resname CHOL"),
gaussian_sd=12

)

Figure 2d of Thallmair et al. (2018) shows how correlation tends to increase with increasing gaussian_sd. This
is because the density of atomic positions is more diffuse and thus more likely to overlap between the two leaflets.
Increasing gaussian_sd also incurs a performance cost.

The class and its methods

class lipyphilic.lib.registration.Registration(universe, upper_sel, lower_sel, leaflets, filter_by=None,
n_bins=None, gaussian_sd=15)

Calculate interleaflet registration in a bilayer.

Set up parameters for the registration calculation.

Parameters

• universe (Universe) – MDAnalysis Universe object

• upper_sel (str) – Selection string for lipids in the upper leaflet of the bilayer to be used for
determining registration.

• lower_sel (str) – Selection string for lipids in the lower leaflet of the bilayer to be used for
determining registration.

• leaflets (numpy.ndarray) – An array of leaflet membership in which: -1 corresponds to the
lower leaflet; 1 corresponds to the upper leaflet; and 0 corresponds to the midplane. If the
array is 1D and of shape (n_lipids), each lipid is taken to remain in the same leaflet over the
trajectory. If the array is 2D and of shape (n_lipids, n_frames), the leaflet to which each lipid
is assisgned at each frame will be taken into account when calculating the area per lipid.

• filter_by (numpy.ndarray, optional) – A boolean array indicating whether or not to include
each lipid in the registration analysis. If the array is 1D and of shape (n_lipids), the same
lipids will be used in the registration analysis at every frame. If the array is 2D and of shape
(n_lipids, n_frames), the boolean value of each lipid at each frame will be taken into account.
The default is None, in which case no filtering is performed.

• n_bins (int, optional) – The number of bins to use in each dimension for the two-dimensional
density calculations. The default is None, in which case the number of bins will be given by
the size of the system in the ‘x’ dimension rounded up to the nearest integer.

• gaussian_sd (float, optional) – The standard deviation of the circular Gaussian density to
convolve with the two-dimensional densities. The spreads out the data to better represent the
size of the lipids. The default is 15.

6.5. API 33

https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b01877
https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b01877

lipyphilic, Release 0.9.0

6.5.4 Neighbours — lipyphilic.lib.neighbours

Author Paul Smith

Year 2021

Copyright GNU Public License v2

This module provides methods for finding neighbouring lipids in a bilayer, calculating local lipid compositions and
lipid enrichment, and finding the largest cluster of specific species of lipids over time.

Two lipids are considered neighbours if they have any atoms within a given cutoff distance of one another.

Input

Required:

• universe : an MDAnalysis Universe object.

• lipid_sel : atom selection for lipids in the bilayer

Optional:

• cutoff : lipids are considered to be neighbouring if they have at least one pair of atoms less than this distance
apart (in Å)

Output

• neighbours : a sparse matrix of binary variables, equal to 1 if two lipids are in contact, and 0 otherwise

For efficient use of memory, an adjacency matrix of neighbouring lipids is stored in a scipy.sparse.csr_matrix
sparse matrix for each frame of the analysis. The data are stored in the neighbours.neighbours attribute as a NumPy
array of sparse matrices. Each matrix has shape (n_residues, n_residues)

Tip: The resultant sparse matrix can be used to calculate the local lipid composition of each individual lipid at each
frame using lipyphilic.lib.neighbours.count_neighbours(), or to find the largest cluster of lipids at each
frame using lipyphilic.lib.neighbours.largest_cluster().

Example usage of Neighbours

An MDAnalysis Universe must first be created before using Neighbours:

import MDAnalysis as mda
from lipyphilic.lib.neighbours import Neighbours

u = mda.Universe(tpr, trajectory)

We can now create our Neighbours object:

neighbours = Neighbours(
universe=u,
lipid_sel="name GL1 GL2 ROH", # assuming we're using the MARTINI forcefield
cutoff=12.0

)

34 Chapter 6. Contents

lipyphilic, Release 0.9.0

A lipid will be considered to be neighbouring a cholesterol molecule if either its GL1 or GL2 bead is within 12 Å of the
ROH bead of the cholesterol. For neighbouring lipids, the distances between there respective GL1 and “GL2* beads
will be considered.

We then select which frames of the trajectory to analyse (None will use every frame) and select to display a progress
bar (verbose=True):

neighbours.run(
start=None,
stop=None,
step=None,
verbose=True

)

The results are then available in the neighbours.Neighbours attribute as a numpy.ndarray of Compressed Sparse
Row matrices.

Counting the number of neighbours: by lipid species

In order to compute the number of each lipid species around each lipid at each frame, after generating the neighbour
matrix we can use the count_neighbours() method:

counts = neighbours.count_neighbours()

Counts is a pandas.DataFrame in which each row contains the following information (if there are N distinct species
in the membrane):

[
<lipid identifier>, # by default, the lipid resname
<lipid resindex>,
<frame>,
<num species_1 neighbours>,
...
<num species_N neighbours>,
<total num neighbours>

]

Counting the number of neighbours: by user-defined labels

Instead of using the lipid resname to identify neighbouring lipids, any ordinal data may be used for counting lipid
neighbours. This is done through use of the count_by and count_by_labels parameters:

counts = neighbours.count_neighbours(
count_by=lipid_order_data,
count_by_labels={'Ld': 0, 'Lo': 1}

)

Here we assume that ‘lipid_order_data’ contains information on whether each lipid is in the liquid-disordered phase
or the liquid-ordered phase at each frame. It must take the shape ‘(n_residues, n_frames)’, and in this example
‘lipid_order_data[i, j]’ would be equal to ‘0’ if lipid ‘i’ is liquid-disordered at frame ‘j’ and equal to ‘1’ if it is liquid-
ordered. ‘count_by_labels’ is used to signify that the value ‘0’ corresponds to the liquid-disordered (Ld) phase and
the value ‘1’ to the liquid-ordered (Lo) phase. In this example, the returned pandas.DataFrame would contain the
following information in each row:

6.5. API 35

lipyphilic, Release 0.9.0

[
<Ld or Lo>,
<lipid resindex>,
<frame>,
<num Ld neighbours>,
<num Lo neighbours>,
<total num neighbours>

]

Calculate the enrichment index of lipid species

The count_neighbours() method will, by default, return the number of neighbouring lipids around each individual
lipid.

However, a clearer picture of aggregation of certain lipid species can be gained by instead considering the enrich-
ment/depletion index of each lipid species, defined in Ingólfsson et al. (2014). In this instance, the number of each
neighbour species B around a given reference species A is normalized by the average number of species B around any
lipid.

To calculate the enrichment/depletion index of each species at each frame, as well as the raw neighbour counts, we can
set the return_enrichment keyword to true:

counts, enrichment = neighbours.count_neighbours(return_enrichment=True)

This will return two pandas DataFrames, one containing the neighbour counts and the other the enrichment/depletion
index of each species at each frame. The benefit of having the enrichment index at each frame is that you can plot its
time-evolution to see whether particular species form aggregates over time.

Find the largest cluster

To find the largest cluster of a set of lipid species we can use the largest_cluster() method:

largest_cluster = neighbours.largest_cluster(
cluster_sel="resname CHOL DPPC"

)

The results are returned in a numpy.ndarray and contain the number of lipids in the largest cluster at each frame.

Find the largest cluster in a given leaflet

The previous example will compute the largest cluster formed by cholesterol and DPPC molecules at each frame. In
large coarse-grained systems where there is substantial flip-flop of sterols, this cluster may span both leaflets. In order
to find the largest cluster at each frame within a given leaflet, we can tell largest_cluster() to consider only lipids
in the upper leaflet by using the filter_by parameter.

First, though, we need to know which leaflet each lipid is in at each frame. This may be done using lipyphilic.lib.
assign_leaflets.AssignLeaflets:

leaflets = AssignLeaflets(
universe=u,
lipid_sel="name GL1 GL2 ROH" # pass the same selection that was passed to Neighbours

(continues on next page)

36 Chapter 6. Contents

https://pubs.acs.org/doi/10.1021/ja507832e

lipyphilic, Release 0.9.0

(continued from previous page)

)
leaflets.run() # run the analysis on the same frames as Neighbours.run()

The leaflets data are stored in the leaflets.leaflets attribute, will be equal to ‘1’ if the lipid is in the upper leaflet at a
given frame and equal to ‘-1’ if it is in the lower leaflet. See lipyphilic.lib.assign_leaflets.AssignLeaflets
for more information. We can now find the largest cluster over time in the upper (1) leaflet.

The filter_by parameter takes as input a 2D numpy.ndarray of shape (n_residues, n_frames). The array should be
a boolean mask, where True indicates that we should include this lipid in the neighbour calculation:

upper_leaflet_mask = leaflet.leaflets == 1

largest_cluster_upper_leaflet = neighbours.largest_cluster(
cluster_sel="resname CHOL DPPC",
filter_by=upper_leaflet_mask

)

Now, lipids either in the lower leaflet (-1) or the midplane (0) will not be included when determining the largest cluster.

Get residue indices of lipids in the largest cluster

If we want to know not just the cluster size but also which lipids are in the largest cluster at each frame, we can set the
return_indices parameter to True:

largest_cluster, largest_cluster_indices = neighbours.largest_cluster(
cluster_sel="resname CHOL DPPC",
return_indices=True

)

The residue indices will be returned as list of numpy.ndarray arrays - one per frame of the analysis. Each array contains
the residue indices of the lipids in the largest cluster at that frame

The class and its methods

class lipyphilic.lib.neighbours.Neighbours(universe, lipid_sel, cutoff=10.0)
Find neighbouring lipids in a bilayer.

Set up parameters for finding neighbouring lipids.

Parameters

• universe (Universe) – MDAnalysis Universe object

• lipid_sel (str) – Selection string for lipids in the bilayer.

• cutoff (float, optional) – To be considered neighbours, two lipids must have at least one pair
of atoms within this cutoff distance (in Å). The default is 10.0.

count_neighbours(count_by=None, count_by_labels=None, return_enrichment=False)
Count the number of each neighbour type at each frame.

Parameters

• count_by (numpy.ndarray, optional) – An array containing ordinal data describing each
lipid at each frame. For example, it may be an array containing information on the ordered

6.5. API 37

https://docs.scipy.org/doc/numpy-1.15.0/user/basics.indexing.html#boolean-or-mask-index-arrays

lipyphilic, Release 0.9.0

state or each lipid. Defaults to None, in which case the lipid species (resnames) are used
for counting neighbours.

• count_by_labels (dict, optional) – A dictionary of labels describing what each unique
value in count_by refers to, e.g if count_by contains information on the ordered state of each
lipid at each frame, whereby 0 corresponds to disordered and 1 corresponds to ordered, then
count_by_labels = {‘Ld’: 0, ‘Lo’: 1}. There must be precisely one label for each unique
value in ‘count_by’. If count_by is given but count_by_labels is left as None, the values in
count_by will be used as the labels.

• return_enrichment (bool, optional) – If True, a second DataFrame containing the frac-
tional enrichment of each lipid species at each frame is also returned. The default is False,
in which case the fractional enrichment if not returned.

Returns

• counts (pandas.DataFrame) – A DataFrame containing the following data for each lipid at
each frame: lipid identifier (default is resname), lipid residue index, frame number, number
of neighbours of each species (or of each type in ‘count_by’ if this is provided), as well as
the total number of neighbours.

• enrichment (pandas.DataFrame) – A DataFrame containing the following data enrich-
ment/depletion data for each lipid species at each frame.

largest_cluster(cluster_sel=None, filter_by=None, return_indices=False)
Find the largest cluster of lipids at each frame.

Parameters

• cluster_sel (str, optional) – Selection string for lipids to include in the cluster analysis. The
default is None, in which case all lipid used in identiying neighbouring lipids will be used
for finding the largest cluster.

• filter_by (numpy.ndarray, optional) – A boolean array indicating whether or not to include
each lipid in the cluster analysis. If the array is 1D and of shape (n_lipids), the same lipids
will be used in the cluster analysis at every frame. If the array is 2D and of shape (n_lipids,
n_frames), the boolean value of each lipid at each frame will be taken into account. The
default is None, in which case all lipids used in identiying neighbours will be used for
finding the largest cluster.

• return_indices (bool, optional) – If True, a list of NumPy arrays will also be returned,
on for each frame. Each NumPy array will contain the residue indices of the lipids in the
largest cluster at that frame. Note, if there are two largest clusters of equal size, only the
residue indices of lipids in one cluster will be returned (the cluster that has the lipid with the
smallest residue index). The default is False, in which case no reidue indices are returned.

Returns

• largest_cluster (numpy.ndarray) – An array containing the number of lipids in the largest
cluster at each frame.

• indices (list) – A list of 1D NumPy arrays, where each array corresponds to a single frame
and contains the residue indices of lipids in the largest cluster at that frame.

Note: Neighbours must be found by using Neighbours.run() before calling either Neigh-
bours.count_neighbours() or Neighbours.largest_cluster().

38 Chapter 6. Contents

lipyphilic, Release 0.9.0

6.5.5 Area per lipid — lipyphilic.lib.area_per_lipid

Author Paul Smith

Year 2021

Copyright GNU Public License v2

This module provides methods for calculating the area per lipid in a bilayer.

The class lipyphilic.lib.area_per_lipid.AreaPerLipid calculates the area of each lipid via a 2D Voronoi
tessellation of atomic positions. See Lukat et al. (2013) for a description of calculating the area per lipid via Voronoi
tessellations.

This class uses Freud for performing the Voronoi tessellations from which the area per lipid is calculated.

Input

Required:

• universe : an MDAnalysis Universe object.

• lipid_sel : atom selection for lipids in the bilayer. These atoms will be used to perform the Voronoi tessel-
lation.

• leaflets : leaflet membership (-1: lower leaflet, 0: midplane, 1: upper leaflet) of each lipid in the membrane.

Output

• area : area per lipid of each lipid as each frame

Area data are returned in a numpy.ndarray, where each row corresponds to an individual lipid and each column
corresponds to an individual frame, i.e. areas[i, j] refers to the area of lipid i at frame j. The results are accessible via
the AreaPerLipid.areas attribute.

Note: No area can be calculated for molecules that are in the midplane, i.e. those for which leaflets==0. These
molecules will have NaN values in the results array for the frames at which they are in the midplane.

Example usage of AreaPerLipid

An MDAnalysis Universe must first be created before using AreaPerLipid:

import MDAnalysis as mda
from lipyphilic.lib.assign_leaflets import AssignLeaflets

u = mda.Universe(tpr, trajectory)

Then we need to know which leaflet each lipid is in at each frame. This may be done using lipyphilic.lib.
assign_leaflets.AssignLeaflets:

leaflets = AssignLeaflets(
universe=u,
lipid_sel="name GL1 GL2 ROH" # assuming we are using the MARTINI forcefield

)
leaflets.run()

6.5. API 39

https://pubs.acs.org/doi/full/10.1021/ci400172g
https://freud.readthedocs.io/en/stable/index.html

lipyphilic, Release 0.9.0

The leaflet data are stored in the leaflets.leaflets attribute. We can now create our AreaPerLipid object:

areas = AreaPerLipid(
universe=u,
lipid_sel="name GL1 GL2 ROH",
leaflets=leaflets.leaflets

)

The above will use GL1 and GL2 beads to calculate the area of each phospholipid, and the ROH bead to calculate the
area of each sterol. Two Voronoi tessellations will be performed at each frame — one for the upper leaflet and one for
the lower leaflet.

We then select which frames of the trajectory to analyse (None will use every frame) and choose to display a progress
bar (verbose=True):

areas.run(
start=None,
stop=None,
step=None,
verbose=True

)

The results are then available in the areas.areas attribute as a numpy.ndarray. Each row corresponds to an indi-
vidual lipid and each column to an individual frame, i.e areas.areas[i, j] contains the area of lipid i at frame j.

Warning: If your membrane is highly curved the calculated area per lipid will be inaccurate. In this case we
recommend you use either FATSlim, MemSurfer or ML-LPA.

The class and its methods

class lipyphilic.lib.area_per_lipid.AreaPerLipid(universe, lipid_sel, leaflets)
Calculate the area of lipids in each leaflet of a bilayer.

Set up parameters for calculating areas.

Parameters

• universe (Universe) – MDAnalysis Universe object

• lipid_sel (str) – Selection string for lipids in the bilayer. Typically, in all-atom simulations,
one atom per sterol and three atoms per non-sterol lipid would be used. In coarse-grained
simulations, one bead per sterol and two beads per non-sterol lipid would typically be used.

• leaflets (numpy.ndarray (n_lipids,)) – An array of leaflet membership in which: -1 corre-
sponds to the lower leaflet; 1 corresponds to the upper leaflet; and 0 corresponds to the
midplane. If the array is 1D and of shape (n_lipids), each lipid is taken to remain in the same
leaflet over the trajectory. If the array is 2D and of shape (n_lipids, n_frames), the leaflet to
which each lipid is assisgned at each frame will be taken into account when calculating the
area per lipid.

Tip: Leaflet membership can be determined using lipyphilic.lib.assign_leaflets.AssignLeaflets.

40 Chapter 6. Contents

https://pythonhosted.org/fatslim/
https://github.com/LLNL/MemSurfer
https://vivien-walter.github.io/mllpa/

lipyphilic, Release 0.9.0

project_area(lipid_sel=None, start=None, stop=None, step=None, filter_by=None, bins=None, ax=None,
cmap=None, vmin=None, vmax=None, cbar=True, cbar_kws={}, imshow_kws={})

Project the area per lipid onto the xy plane of the membrane.

The areas per lipid, averaged over a selected range of frames, are projected onto the xy plane based on the
center of mass of each lipid. The atoms to be used in calculating the center of mass of the lipids can be
specified using the lipid_sel arugment.

This method creates an instance of lipyphilic.lib.plotting.ProjectionPlot with the projected areas interpo-
lated across periodic boundaries. The plot is returned so further modification can be performed if needed.

Note: The lipid positions are taken from the middle frame of the selected range.

Parameters

• lipid_sel (MDAnalysis atom selection, optional) – The center of mass of each lipid will be
determined via this selection. The default is None, in which case every atom of a lipid is
used to determine its center of mass.

• start (int, optional) – Start frame for averaging the area per lipid results.

• stop (int, optional) – Final frame for averaging the area per lipid results.

• step (int, optional) – Number of frames to skip

• filter_by (array-like, optional) – A Boolean mask for selecting a subset of lipids. It may
take the following shapes:

(n_lipids) The mask is used to select a subset of lipids for projecting the areas onto the
membrane plane.

(n_lipids, n_frames) This is the same shape as the NumPy array created by the
lipyphilic.lib.AreaPerLipid.run() method. Boolean values are used only from the column
corresponding to the middle frame of the range selected by start, stop, and step.

The default is None, in which case no filtering is applied.

• bins (int or array_like or [int, int] or [array, array]) – The bin specification:

int If int, the number of bins for the two dimensions (nx=ny=bins).

array-like If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).

[int, int] If [int, int], the number of bins in each dimension (nx, ny = bins).

[array, array] If [array, array], the bin edges in each dimension (x_edges, y_edges =
bins).

combination A combination [int, array] or [array, int], where int is the number of bins
and array is the bin edges.

The default is None, in which case a grid with 1 x 1 Angstrom resolution is created.

• ax (Axes, optional) – Matplotlib Axes on which to plot the projection. The default is None,
in which case a new figure and axes will be created.

• cmap (str or ~matplotlib.colors.Colormap, optional) – The Colormap instance or registered
colormap name used to map scalar data to colors.

• vmin, vmax (float, optional) – Define the data range that the colormap covers. By default,
the colormap covers the complete value range of the supplied data.

• cbar (bool, optional) – Whether or not to add a colorbar to the plot.

6.5. API 41

lipyphilic, Release 0.9.0

• cbar_kws (dict, optional) – A dictionary of keyword options to pass to mat-
plotlib.pyplot.colorbar.

• imshow_kws (dict, optional) – A dictionary of keyword options to pass to mat-
plotlib.pyplot.imshow, which is used to plot the 2D density map.

Returns area_projection (ProjectionPlot) – The ProjectionPlot object containing the area per
lipid data and the matplotlob.pyplot.imshow plot of the projection.

6.5.6 Lipid order parameter — lipyphilic.lib.order_parameter

Author Paul Smith

Year 2021

Copyright GNU Public License v2

This module provides methods for calculating the orientational order parameter of lipid tails in a bilayer.

Coarse-grained order parameter

The class liyphilic.lib.order_parameter.SCC calculates the coarse-grained order parameter, as defined in Seo
et al. (2020). The coarse-grained order parameter, 𝑆𝐶𝐶 , is defined as:

𝑆𝐶𝐶 =

⟨︀
3 cos2 𝜃 − 1

⟩︀
2

where 𝜃 is the angle between the membrane normal and the vector connecting two consecutive tail beads. Angular
brackets denote averages over all beads in an acyl tail.

See Piggot et al. (2017) for an excellent discussion on calculating acyl tali order parameters in molecular dynamics
simulations.

Input

Required:

• universe : an MDAnalysis Universe object

• tail_sel : atom selection for beads in the acyl tail

Options:

• normals : local membrane normals for each tail at each frame

Output

• SCC : order parameter of each tail at each frame

The order parameter data are returned in a numpy.ndarray, where each row corresponds to an individual lipid and
each column corresponds to an individual frame.

Warning: tail_sel should select beads in either the sn1 or sn2 tails, not both tails.

42 Chapter 6. Contents

https://pubs.acs.org/doi/full/10.1021/acs.jpclett.0c01317
https://pubs.acs.org/doi/full/10.1021/acs.jpclett.0c01317
https://pubs.acs.org/doi/full/10.1021/acs.jctc.7b00643

lipyphilic, Release 0.9.0

Example usage of Scc

An MDAnalysis Universe must first be created before using SCC:

import MDAnalysis as mda
from lipyphilic.lib.order_parameter import SCC

u = mda.Universe(tpr, trajectory)

If we have used the MARTINI forcefield to study a DPPC/DOPC/cholesterol mixture, we can calculate the order
parameter of the sn1 of tails of DPPC and DOPC as follows:

scc_sn1 = SCC(
universe=u,
tail_sel="name ??A" # selects C1A, C2A, D2A, C3A, and C4A

)

This will calculate 𝑆𝐶𝐶 of each DOPC and DPPC sn1 tail.

We then select which frames of the trajectory to analyse (None will use every frame) and choose to display a progress
bar (verbose=True):

scc_sn1.run(
start=None,
stop=None,
step=None,
verbose=True

)

The results are then available in the scc_sn1.SCC attribute as a numpy.ndarray. The array has the shape (n_residues,
n_frames). Each row corresponds to an individual lipid and each column to an individual frame.

Likewise, to calculate the 𝑆𝐶𝐶 of the sn2 tails, we can do:

scc_sn2 = SCC(
universe=u,
tail_sel="name ??B" # selects C1B, C2B, D2B, C3B, and C4B

)
scc_sn2.run(verbose=True)

And then get a weighted-average 𝑆𝐶𝐶 we can do:

SCC.weighted_average(scc_sn1, scc_sn2)

which will take into account the number of beads in each tail and return a new SCC object whose SCC attribute contains
the weighted-average 𝑆𝐶𝐶 for each lipid at each frame.

6.5. API 43

lipyphilic, Release 0.9.0

Local membrane normals

By default, the 𝑆𝐶𝐶 is calculated as the angle between the positive 𝑧 axis and the vector between two consecutive beads
in an acyl tail. However, it is also possible to pass to SCC local membrane normals to use instead of the positive 𝑧 axis.

You can also calculate local membrane normals using, for example, MemSurfer. If you store the local membrane
normals in a numpy.ndarray called normals, with shape (n_residues, n_frames, 3), then you can simply pass these
normals to SCC:

scc_sn1 = SCC(
universe=u,
tail_sel="name ??A",
normals=normals

)
scc_sn1.run(verbose=True)

𝑆𝐶𝐶 projected onto the membrane plane

Once the 𝑆𝐶𝐶 has been calculated, it is possible to create a 2D plot of time-averaged 𝑆𝐶𝐶 values projected onto the
membrane plane. This can be done using the liypphilic.lib.SCC.project_SCC() method, which is a wrapper
around the more general liypphilic.lib.plotting.ProjectionPlot class.

If the lipids have been assigned to leaflets, and the weighted average of the sn1 and sn2 tails stored in an SCC object
named scc, we can plot the projection of the coarse-grained order parameter onto the membrane plane as follows:

scc_projection = scc.project_SCC(
lipid_sel="name ??A ??B",
start=-100,
stop=None,
step=None,
filter_by=leaflets.filter_by("name ??A ??B") == -1

)

The order parameter of each lipid parameter will be averaged over the final 100 frames, as specified by the start
argument. The frame in the middle of the selected frames will be used for determining lipid positions. In the above
case, the lipid positions at frame −50 will be used. The lipid_sel specifies that the center of mass of the sn1 (“??A”)
and sn2 (“??B”) atoms will be used for projecting lipid positions onto the membrane plane. And the filter_by argument
is used here to specificy that only lipids in the lower (-1) leaflet should be used for plotting the projected 𝑆𝐶𝐶 values.

The class and its methods

class lipyphilic.lib.order_parameter.SCC(universe, tail_sel, normals=None)
Calculate coarse-grained acyl tail order parameter.

Set up parameters for calculating the SCC.

Parameters

• universe (Universe) – MDAnalysis Universe object

• tail_sel (str) – Selection string for atoms in either the sn1 or sn2 tail of lipids in the membrane

• normals (numpy.ndarray, optional) – Local membrane normals, a 3D array of shape
(n_residues, n_frames, 3), containing x, y and z vector components of the local membrane
normals.

44 Chapter 6. Contents

https://pubs.acs.org/doi/abs/10.1021/acs.jctc.9b00453

lipyphilic, Release 0.9.0

project_SCC(lipid_sel=None, start=None, stop=None, step=None, filter_by=None, bins=None, ax=None,
cmap=None, vmin=None, vmax=None, cbar=True, cbar_kws={}, imshow_kws={})

Project the SCC values onto the xy plane of the membrane.

The SCC values, averaged over a selected range of frames, are projected onto the xy plane based on the
center of mass of each lipid. The atoms to be used in calculating the center of mass of the lipids can be
specified using the lipid_sel arugment.

This method creates an instance of lipyphilic.lib.plotting.ProjectionPlot with the projected 𝑆𝐶𝐶 interpo-
lated across periodic boundaries. The plot is returned so further modification can be performed if needed.

Note: The lipid positions are taken from the middle frame of the selected range.

Parameters

• lipid_sel (MDAnalysis atom selection, optional) – The center of mass of each lipid will be
determined via this selection. The default is None, in which case every atom of a lipid is
used to determine its center of mass.

• start (int, optional) – Start frame for averaging the SCC results.

• stop (int, optional) – Final frame for averaging the SCC results.

• step (int, optional) – Number of frames to skip

• filter_by (array-like, optional) – A Boolean mask for selecting a subset of lipids. It may
take the following shapes:

(n_lipids) The mask is used to select a subset of lipids for projecting the SCC onto the
membrane plane.

(n_lipids, n_frames) This is the same shape as the NumPy array created by the
lipyphilic.lib.SCC.run() method. Boolean values are used only from the column corre-
sponding to the middle frame of the range selected by start, stop, and step.

The default is None, in which case no filtering is applied.

• bins (int or array_like or [int, int] or [array, array]) – The bin specification:

int If int, the number of bins for the two dimensions (nx=ny=bins).

array-like If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).

[int, int] If [int, int], the number of bins in each dimension (nx, ny = bins).

[array, array] If [array, array], the bin edges in each dimension (x_edges, y_edges =
bins).

combination A combination [int, array] or [array, int], where int is the number of bins
and array is the bin edges.

The default is None, in which case a grid with 1 x 1 Angstrom resolution is created.

• ax (Axes, optional) – Matplotlib Axes on which to plot the projection. The default is None,
in which case a new figure and axes will be created.

• cmap (str or ~matplotlib.colors.Colormap, optional) – The Colormap instance or registered
colormap name used to map scalar data to colors.

• vmin, vmax (float, optional) – Define the data range that the colormap covers. By default,
the colormap covers the complete value range of the supplied data.

• cbar (bool, optional) – Whether or not to add a colorbar to the plot.

6.5. API 45

lipyphilic, Release 0.9.0

• cbar_kws (dict, optional) – A dictionary of keyword options to pass to mat-
plotlib.pyplot.colorbar.

• imshow_kws (dict, optional) – A dictionary of keyword options to pass to mat-
plotlib.pyplot.imshow, which is used to plot the 2D density map.

Returns scc_projection (ProjectionPlot) – The ProjectionPlot object containing the SCC data
and the matplotlob.pyplot.imshow plot of the projection.

static weighted_average(sn1_scc, sn2_scc)
Calculate the weighted average Scc of two tails.

Given two SCC objects, a weighted average of the Scc of each lipid is calculated.

Parameters

• sn1_scc (SCC) – An SCC object for which the order parameters have been calculated.

• sn2_scc (SCC) – An SCC object for which the order parameters have been calculated.

Returns scc (SCC) – An SCC object with the weighted average Scc of each lipid at each frame
stored in the scc.SCC attirbute

Warning: The frames used in analysing ‘sn1_scc’ and ‘sn2_scc’ must be the same - i.e. the ‘start’,
‘stop’, and ‘step’ parameters passed to the ‘.run()’ methods must be identical.

6.5.7 Lipid z angles — lipyphilic.lib.z_angles

Author Paul Smith

Year 2021

Copyright GNU Public License v2

This module provides methods for calculating the angle lipids make with the positive 𝑧 axis.

Two atoms must be selected per lipid, and the angle between the 𝑧 axis and the vector joining the two atoms will be
calculated for each lipid. The vector will always point from atom B to atom A, even for lipids in the lower leaflet. This
means the angle 𝜃𝐴𝐵𝑧 will be in the range −180 < 𝜃 < 180.

Input

Required:

• universe : an MDAnalysis Universe object

• atom_A_sel : atom selection for atom A in each lipid

• atom_B_sel : atom selection for atom B in each lipid

Options:

• rad : boolean variable specifying whether to return the angle in radians

46 Chapter 6. Contents

lipyphilic, Release 0.9.0

Output

• z_angles : angle made between the 𝑧-axis and the vector from 𝐵 to 𝐴

The 𝑧 angles data are returned in a numpy.ndarray, where each row corresponds to an individual lipid and each
column corresponds to an individual frame.

Example usage of ZAngles

An MDAnalysis Universe must first be created before using ZAngles:

import MDAnalysis as mda
from lipyphilic.lib.z_angles import ZAngles

u = mda.Universe(tpr, trajectory)

If we have used the MARTINI forcefield to study a phospholipid/cholesterol mixture, we can calculate the orientation
of cholesterol in the bilayer as follows:

z_angles = ZAngles(
universe=u,
atom_A_sel="name ROH",
atom_B_sel="name R5"

)

This will calculate the angle between the 𝑧-axis and the vector from the R5 bead to the ROH bead of cholesterol.

We then select which frames of the trajectory to analyse (None will use every frame) and choose to display a progress
bar (verbose=True):

z_angles.run(
start=None,
stop=None,
step=None,
verbose=True

)

The results are then available in the z_angles.z_angles attribute as a numpy.ndarray. The array has the shape
(n_residues, n_frames). Each row corresponds to an individual lipid and each column to an individual frame.

Calculate the angle in radians

By default, the results are returned in degrees. We can also specify that the results should be returned in radians:

z_angles = ZAngles(
universe=u,
atom_A_sel="name ROH",
atom_B_sel="name R5",
rad=True

)

6.5. API 47

lipyphilic, Release 0.9.0

The class and its methods

class lipyphilic.lib.z_angles.ZAngles(universe, atom_A_sel, atom_B_sel, rad=False)
Calculate the orientation of lipids in a bilayer.

Set up parameters for calculating the orientations.

Parameters

• universe (Universe) – MDAnalysis Universe object

• atom_A_sel (str) – Selection string for atom A of lipids in the membrane.

• atom_B_sel (str) – Selection string for atom B of lipids in the membrane.

• rad (bool, optional) – Whether to return the angles in radians. The default is False, in which
case the results are returned in degrees.

Note: The orientation is defined as the angle between 𝑧 and the vector from atom B to atom A.

6.5.8 Lipid z positions — lipyphilic.lib.z_positions

Author Paul Smith

Year 2021

Copyright GNU Public License v2

This module provides methods for calculating the distance in 𝑧 of lipids to the bilayer center.

The class lipyphilic.lib.z_position.ZPositions assigns the membrane midpoint to be at 𝑧 = 0 Lipids in the
upper leaflet will have positive 𝑧 values and those in the lower leaflet will have negative 𝑧 values.

Input

Required:

• universe : an MDAnalysis Universe object

• lipid_sel : atom selection for all lipids in the bilayer

• height_sel : atom selection for the molecules for which the 𝑧 position will be calculated

Options:

• n_bins : split the membrane into n_bins * n_bins patches, and calculate local membrane midpoints for each
patch

48 Chapter 6. Contents

lipyphilic, Release 0.9.0

Output

• z_position : height in 𝑧 of each selected molecule in the bilayer

The 𝑧 positions data are returned in a numpy.ndarray, where each row corresponds to an individual molecule and
each column corresponds to an individual frame.

Example usage of ZPositions

An MDAnalysis Universe must first be created before using ZPositions:

import MDAnalysis as mda
from lipyphilic.lib.z_positions import ZPositions

u = mda.Universe(tpr, trajectory)

If we have used the MARTINI forcefield to study a phospholipid/cholesterol mixture, we can calculate the height of
cholesterol in the bilayer as follows:

z_positions = ZPositions(
universe=u,
lipid_sel="name GL1 GL2 ROH",
height_sel="name ROH"

)

lipid_sel is an atom selection that covers all lipids in the bilayer. This is used for calculating the membrane midpoint.
height_sel selects which atoms to use for caclulating the height of each each molecule.

Note: In the above example we are calculating the height of cholesterol in the bilayer, although the height of any
molecule - even those not in the bilayer, such as peptides - can be calculated instead.

We then select which frames of the trajectory to analyse (None will use every frame) and choose to display a progress
bar (verbose=True):

z_positions.run(
start=None,
stop=None,
step=None,
verbose=True

)

The results are then available in the z_positions.z_positions attribute as a numpy.ndarray. The array has the
shape (n_residues, n_frames). Each row corresponds to an individual molecule and each column to an individual frame.
The height is signed (not absolute) — positive and negative values correspond to the molecule being in the upper of
lower leaflet respecitvely.

6.5. API 49

lipyphilic, Release 0.9.0

𝑧 positions based on local membrane midpoints

The first example computes a global membrane midpoint based on all the atoms of the lipids in the membrane. 𝑧
positions are then calculated as the distance to this midpoint. This is okay for planar bilayers, but can lead to inaccurate
results in membranes with undulations. If your bilayer has undulations, ZPositions can account for this by creating a
grid in 𝑥𝑦 of your membrane, calculating the local membrane midpoint in each patch, then find the distance of each
molecule to its local midpoint. This is done through use of n_bins:

z_positions = ZPositions(
universe=u,
lipid_sel="name GL1 GL2 ROH",
height_sel="name ROH"
n_bins=10

)

In this example, the membrane will be split into a 10 x 10 grid and a lipid 𝑧 positions calculated based on the distance
to the midpoint of the patch the molecule is in.

Warning: Using n_bins can account for small undulations. However, if you have large unulations in your bilayer
the calculated height will be inaccurate.

The class and its methods

class lipyphilic.lib.z_positions.ZPositions(universe, lipid_sel, height_sel, n_bins=1)
Calculate the 𝑧 position of molecules in a bilayer.

Set up parameters for calculating 𝑧 positions.

Parameters

• universe (Universe) – MDAnalysis Universe object

• lipid_sel (str) – Selection string for the lipids in a membrane. Atoms in this selection are
used for calculating membrane midpoints.

• height_sel (str) – Selection string for molecules for which the height in 𝑧 will be calculated.
Any residues not in this selection will not have their 𝑧 positions calculated.

• n_bins (int, optional) – Number of bins in x and y to use to create a grid of membrane
patches. Local membrane midpoints are computed for each patch, and lipid 𝑧 positions
calculated based on the distance to their local membrane midpoint. The default is 1, which
is equivalent to computing a single global midpoint.

Note: height_sel must be a subset of lipid_sel

50 Chapter 6. Contents

lipyphilic, Release 0.9.0

6.5.9 Lipid z thickness — lipyphilic.lib.z_thickness

Author Paul Smith

Year 2021

Copyright GNU Public License v2

This module provides methods for calculating the thickness in 𝑧 of lipids or lipid tails.

The thickness of lipid tails is a useful input feature for creating Hidden Markov Models (HMM) to detect phase sepa-
ration in lipid bilayers. See Park and Im (2019) for a description of using HMMs in lipid membrane analysis.

Input

Required:

• universe : an MDAnalysis Universe object

• lipid_sel : atom selection for the atoms to be used in calculating the thickness of a lipid

Output

• z_thickness : thickness in 𝑧 of each lipid in the bilayer

The 𝑧 thickness data are returned in a numpy.ndarray, where each row corresponds to an individual lipid and each
column corresponds to an individual frame.

Example usage of ZThickness

An MDAnalysis Universe must first be created before using ZThickness:

import MDAnalysis as mda
from lipyphilic.lib.z_thickness import ZThickness

u = mda.Universe(tpr, trajectory)

If we have used the MARTINI forcefield to study a phospholipid/cholesterol mixture, we can calculate the thickness of
cholesterol and sn1 tails in the bilayer as follows:

z_thickness_sn1 = ZThickness(
universe=u,
lipid_sel="(name ??1 ??A) or (resname CHOL and not name ROH)"

)

Above, our lipid_sel selection will select sn1 beads and cholesterol beads in the MARTINI forcefield, making use of
the powerful MDAnalysis atom selection language.

We then select which frames of the trajectory to analyse (None will use every frame) and choose to display a progress
bar (verbose=True):

z_thickness_sn1.run(
start=None,
stop=None,
step=None,

(continues on next page)

6.5. API 51

https://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00828

lipyphilic, Release 0.9.0

(continued from previous page)

verbose=True
)

The results are then available in the z_thickness_sn1.z_thickness attribute as a numpy.ndarray. The array has
the shape (n_residues, n_frames). Each row corresponds to an individual lipid and each column to an individual frame.

Averaging the thickness of two tails

Above we saw how to calculate the thickness of the sn1 tail of lipids along with cholesterol. Similarly, we can calculate
the thickness of the sn2 tails:

z_thickness_sn2 = ZThickness(
universe=u,
lipid_sel="(name ??1 ??A) or (resname CHOL and not name ROH)"

)
z_thickness_sn2.run(verbose=True)

Now, if we would like to know the mean thickness of acyl tails across both sn1 and sn2 tails, we can use the average()
method of ZThickness:

z_thickness = ZThickness.average(
z_thickness_sn1,
z_thickness_sn2

)

This will average the thickness of the two tails, leaving the cholesterol thicknesses (from z_thickness_sn1) unchanged,
and return a new ZThickness object containing the averaged data in its z_thickness attribute.

The class and its methods

class lipyphilic.lib.z_thickness.ZThickness(universe, lipid_sel)
Calculate the thickness in z of lipids in a bilayer.

Set up parameters for calculating lipid thicknesses.

Parameters

• universe (Universe) – MDAnalysis Universe object

• lipid_sel (str) – Selection string for atoms to use in calculating lipid thickneses

static average(sn1_thickness, sn2_thickness)
Calculate the average thickness of two tails.

Given two ZThickness objects, typically each representing either the sn1 or sn2 tails of the lipids, an aver-
agte thickness of each lipid is calculated.

Parameters

• sn1_thickness (ZThickness) – A ZThickness object for which the thicknesses have been
calculated.

• sn2_thickness (ZThickness) – A ZThickness object for which the thicknesses have been
calculated.

52 Chapter 6. Contents

lipyphilic, Release 0.9.0

Returns z_thickness (ZThickness) – A new ZThickness object containing the averaged data in
its z_thickness attribute.

Warning: The frames used in analysing ‘sn1_thickness’ and ‘sn2_thickness’ must be the same - i.e.
the ‘start’, ‘stop’, and ‘step’ parameters passed to the ‘.run()’ methods must be identical.

6.5.10 Membrane thickness — lipyphilic.lib.memb_thickness

Author Paul Smith

Year 2021

Copyright GNU Public License v2

This module provides methods for calculating the membrane thickness over time.

The membrane thickness is defined as the mean distance in 𝑧 between lipids in the upper and lower leaflets. A discrete
intrinsic surface is constructed for each leaflet based on user-defined lipid headgroup atoms, and the mean distance in
𝑧 between the two surfaces defines the membrane thickness.

Input

Required:

• universe : an MDAnalysis Universe object

• leaflets : a NumPy array containing the leaflet membership of each lipid at each frame

• lipid_sel : atom selection for lipids in the upper leaflet to used in the thickness calculation

Options: - n_bins : a discrete intrinsic surface of each leaflet is created with n_bins * n_bins patches

Output

• thickness : the mean membrane thickness at each frame

Thickness data are returned in a numpy.ndarray, containing the mean membrane thickness at each frame.

Example usage of MembThickness

An MDAnalysis Universe must first be created before using MembThickness:

import MDAnalysis as mda
from lipyphilic.lib.memb_thickness import MembThickness

u = mda.Universe(tpr, trajectory)

Then we need to know which leaflet each lipid is in at each frame. This may be done using lipyphilic.lib.
assign_leaflets.AssignLeaflets:

6.5. API 53

lipyphilic, Release 0.9.0

leaflets = AssignLeaflets(
universe=u,
lipid_sel="name GL1 GL2 ROH" # assuming we are using the MARTINI forcefield

)
leaflets.run()

The leaflets data are stored in the leaflets.leaflets attribute. We can now create our MembThickness object by
passing the results of lipyphilic.lib.assign_leaflets.AssignLeaflets MembThickness along with an atom
selection for the lipids:

memb_thickness = MembThickness(
universe=u,
leaflets=leaflets.filter_leaflets("resname DOPC and DPPC"), # exclude cholesterol␣

→˓from thickness calculation
lipid_sel="resname DPPC DOPC and name PO4"

)

To calculate the membrane thickness, based on interleaflet PO4 to PO4 distances, we need to use the run() method.
We select which frames of the trajectory to analyse (None will use every frame) and choose to display a progress bar
(verbose=True):

memb_thickness.run(
start=None,
stop=None,
step=None,
verbose=True

)

The results are then available in the memb_thickness.memb_thickness attribute as a numpy.ndarray.

Changing the resolution of the 2D grid

By default, the lipid positions of each leaflet are binned into a two-dimensional histogram using 1 bins in each dimen-
sion. This is equivalent to calculating the mean height of all headgroup atoms in the bilayer, without discretising the
surface.

It is also possible to specify the bins to use for binning the data:

memb_thickness = MembThickness(
universe=u,
leaflets=leaflets.filter_leaflets("resname DOPC and DPPC"), # exclude cholesterol␣

→˓from thickness calculation
lipid_sel="resname DPPC DOPC and name PO4",
n_bins=10

)

This will use 10 bins in each dimension for creating the two-dimensional histogram.

54 Chapter 6. Contents

lipyphilic, Release 0.9.0

Interpolate missing values in a grid with many bins

This is useful only if you would like a very high resolution grid. Having a higher resolution grid may be useful if you
would like to later calculate, for example, the correlation between local membrane thicknesses and the local membrane
area per lipid. The area per lipid can be projected onto the membrane plane using the class ProjectionPlot, and
the height of the bilayer as a function of 𝑥𝑦 can be obtained from MembThickness by setting the return_surface
keyword to True.

A grid with a small bin size (large n_bins) will lead to bins with no atom, and thus no height value. In this instance, the
interpolate keyword should be set to True. However, interpolation substantially decreases performance and should
be left as False unless it is strictly necessary.

The class and its methods

class lipyphilic.lib.memb_thickness.MembThickness(universe, lipid_sel, leaflets, n_bins=1,
interpolate=False, return_surface=False)

Calculate the bilayer thickness.

Set up parameters for calculating membrane thickness.

Parameters

• universe (Universe) – MDAnalysis Universe object

• leaflets (numpy.ndarray (n_lipids,)) – An array of leaflet membership in which: -1 corre-
sponds to the lower leaflet; 1 corresponds to the upper leaflet; and 0 corresponds to the
midplane. If the array is 1D and of shape (n_lipids), each lipid is taken to remain in the same
leaflet over the trajectory. If the array is 2D and of shape (n_lipids, n_frames), the leaflet to
which each lipid is assisgned at each frame will be taken into account when calculating the
area per lipid.

• lipid_sel (str, optional) – Selection string for lipid atoms to be used in the thickness calcu-
lation. The default is None, in which case all atoms of the lipids will be used.

• n_bins (int, optional) – Number of bins in x and y to use to create a grid of membrane
patches. The intrinsic surface of a leaflet is constructed via the height in z of each patch. The
default is 1, which is equivalent to computing a single global leaflet height.

• interpolate (bool, optional) – If True, interpolate the two intrinsic surfaces to fill missing
values. This substantially decreases performance but allows for the construction of higher-
resolution grids. The default is False.

• return_surface (bool, optional) – If True, the height of the bilayer at grid point at each frame
is returned as numpy ndarray. The default is False.

Tip: Leaflet membership can be determined using lipyphilic.lib.assign_leaflets.AssignLeaflets.

6.5. API 55

lipyphilic, Release 0.9.0

6.5.11 Lateral diffusion — lipyphilic.lib.lateral_diffusion

This module contains methods for calculating the lateral diffusion coefficient of lipids in a bilayer.

The class lipyphilic.lib.lateral_diffusion.MSD calculates the two-dimensional mean squared displacent
(MSD) of lipids in a bilayer. The Fast Correlation Algorithm, implemented in tidynamics is used to calculate the
MSD of each lipid, with optional removal of the center of mass motion of the bilayer.

lipyphilic.lib.lateral_diffusion.MSD also contains a method for calculating the lateral diffusion coefficient,
𝐷𝑥𝑦 , via the Einstein relation:

𝐷𝑥𝑦 =
1

4
lim
𝑡→∞

𝑑

𝑑𝑡

⟨
1

𝑁

𝑁∑︁
𝑖=1

|𝑟𝑖(𝑡0 + ∆𝑡) − 𝑟𝑖(𝑡0)|2
⟩

𝑡0

where 𝑁 is the number of lipids, 𝑟𝑖(𝑡0) is the center of mass in 𝑥𝑦 of lipids 𝑖 at a time origin t_0, 𝑟𝑖(𝑡0 + ∆𝑡) is the
same lipid’s center of mass at a lagtime ∆𝑡, and the angular brackets denote an average over all time origins, 𝑡0.

Typically, the MSD is averaged over all molecules. However, lipyphilic.lib.lateral_diffusion.MSD will re-
turn the MSD for each individual lipid. This makes it simple to later calculate the diffusion coefficient using a subset
of the lipids, such as a specific lipid species or lipids near a protein.

Input

Required:

• universe : an MDAnalysis Universe object

• lipid_sel : atom selection for calculating the MSD

Optional:

• com_removal_sel : atom selection for center of mass removal from the MSD

• dt : time period betwen consecutive frames in the MSD analysis

Output

• msd : the mean squared displacement of each lipid at each lagtime, ∆𝑡, in 𝑛𝑚2:

• lagtimes : a NumPy array of lagtimes (in 𝑛𝑠)

The data are stored in the MSD.msd and MSD.lagtimes attributes.

Warning: Before using lipyphilic.lib.lateral_diffusion.MSD you must ensure that the coordinates have been un-
wrapped using, for example, lipyphilic.transformations.nojump.

Example usage of MSD

To calculate the MSD of each lipid in a bilayer we must first load a trajectory using MDAnalysis:

import MDAnalysis as mda
from lipyphilic.lib.lateral_diffusion import MSD

u = mda.Universe(tpr, trajectory)

56 Chapter 6. Contents

https://www.sciencedirect.com/science/article/pii/001046559500048K
http://lab.pdebuyl.be/tidynamics/

lipyphilic, Release 0.9.0

If we have used the MARTINI forcefield to study a phospholipid/cholesterol mixture, we can calculate the MSD of
each lipid as follows:

msd = MSD(
universe=u,
lipid_sel="resname DPPC DOPC CHOL"

)

We then select which frames of the trajectory to analyse (None will use every frame) and choose to display a progress
bar (verbose=True):

msd.run(
start=None,
stop=None,
step=None,
verbose=True

)

The results are then available in the msd.MSD attribute as a numpy.ndarray. Each row corresponds to an individual
lipid and each column to a different lagtime`.

Center of mass removal

During your simulation, it is likely that you removed the center of mass motion of your bilayer in the 𝑧 direction.
However, it is not possible to remove the 𝑥 and 𝑦 center of mass motions until you have unwrapped your lipid positions.

You may select which lipids to use for the center of mass motion removal using the com_removal_sel keyword:

msd = MSD(
universe=u,
lipid_sel="resname DPPC",
com_removla_sel="resname DPPC DOPC CHOL"

)

In this case, the MSD of DPPC will be calculated with the center of mass motion of the bilayer will be subtracted from
it.

Plotting the MSD of each species

If you have calculated the MSD of DPPC, DOPC and cholesterol as in the first example, you can plot the MSD of each
species as follows:

for species in ["DPPC", "DOPC", "CHOL"]:

plt.loglog(
msd.lagtimes,
np.mean(msd.msd[msd.membrane.residues.resnames == species], axis=0),
label=species

)

plt.legend()

The linear part of the log-log plot can be used for fitting a line and calculating the diffusion coefficient.

6.5. API 57

lipyphilic, Release 0.9.0

Calculating the lateral diffusion coefficient

After calculating the MSD and identifying the linear portion of the plot, the :func: diffusion_coefficient method of
lipyphilic.lib.lateral_diffusion.MSD can be used to calculate 𝐷𝑥𝑦 . We need to pass the time at which to
start and stop the linear fit:

d, sem = msd.diffusion_coefficient(
start_fit=400,
end_fit=600

)

This will calculate a diffusion coefficient for each individual lipid and return the mean and standard error of the distri-
bution of coefficients.

To calculate the diffusion coefficient of a subset of lipids we can use the :attr:lipid_sel keyword:

d, sem = msd.diffusion_coefficient(
start_fit=400,
end_fit=600,
lipid_sel="resname CHOL"

)

which will calculate the lateral diffusion coefficient for cholesterol, using a fit to the MSD curve from lagtime ∆𝑡 = 400
to lagtime ∆𝑡 = 600.

class lipyphilic.lib.lateral_diffusion.MSD(universe, lipid_sel, com_removal_sel=None, dt=None)
Calculate the mean-squared lateral displacement of lipids in a bilayer.

The MSD is returned in units of 𝑛𝑚2/𝑛𝑠.

Parameters

• universe (Universe) – MDAnalysis Universe object

• lipid_sel (str) – Selection string for calculating the mean-squared displacemnt. IF multiple
atoms per lipid are selected, the center-of-mass of these atoms will be used for calculating
the MSD.

• com_removal_sel (str, optional) – The MSD of the center of mass of atoms in this selection
will be subtracted from all individual lipid MSDs. The default is None, in which case no
center of mass motion removal is performed.

• dt (float, optional) – The time, in nanoseconds, between consecutive frames in uni-
verse.trajectory. The defualt is None, in which case dt is taken to be universe.trajectory.dt
divided by 1000.

diffusion_coefficient(start_fit=None, stop_fit=None, lipid_sel=None)
Calculate the lateral diffusion coefficient via the Einstein relation.

A diffusion is calculated for each lipid through a linear fit to its MSD curve. The mean and standard error
of the diffusion coefficient is returned.

Parameters

• start_fit (float, optional) – The time at which to start the linear fit to the MSD curve. The
default is None, in which case the fit will exclude the first 20% of the MSD data.

• stop_fit (float, optional) – The time at which to stop the linear fit to the MSD curve. The
default is None, in which case the fit will exclude the final 20% of the MSD data.

58 Chapter 6. Contents

lipyphilic, Release 0.9.0

• lipid_sel (str, optional) – Selection string for lipids to include in calculating the diffusion
coefficient.

Returns

• d (float) – The mean lateral diffusion coefficient, in 𝑐𝑚2/𝑠., averaged over all lipids in
lipid_sel.

• sem (float) – The standard error of the diffusion coefficients.

6.5.12 Plotting utilities — lipyphilic.lib.plotting

Author Paul Smith

Year 2021

Copyright GNU Public License v2

Generally, lipyphilic is not a plotting library — everyone has their favourite plotting tool and aesthetics and so plotting
is generally left up to the user. However, some plots are complex to make, requiring further processing of results or
lots of boilerplate code to get the end result.

This module provides methods for plotting joint probability densities and lateral distribution maps of lipid properties
projected onto the membrane plane.

The class lipyphilic.lib.plotting.ProjectionPlot can be used, for example, to plot the area per lipid pro-
jected onto the membrane plane, i.e. plot the area per lipid as a function of 𝑥𝑦. See Gu et al. (2020) for examples of
these projection plots.

The class lipyphilic.lib.plotting.JointDensity can be used, for example, to plot a 2D PMF of cholesterol
orientation and height in a lipid membrane. See Gu et al. (2019) for an example of the this 2D PMF.

The classes and their methods

class lipyphilic.lib.plotting.ProjectionPlot(x_pos, y_pos, values)
Plot membrane properties as a function of xy. See

This class can be used for plotting membrane properties projected onto the 𝑥𝑦 plane. This is useful, for example,
for detecting phase separation in lipid membranes.

The plotted data are stored in the .statistic attribute. This means, if you plot separately the projection of a
membrane property of lipids in the upper and lower leaflets, you can easily calculate the correlation coefficient
of this property across the leaflets.

interpolate(tile=True, method='linear', fill_value=numpy.NaN)
Interpolate NaN values in the projection array.

Uses scipy.interpolate.griddata to interpolate missing values and optionally remove NaN values.

Parameters

• tile (bool, optional) – If True, the xy values will be tiled on a (3, 3) grid to reproduce the
effect of periodic boundary conditions. If False, no periodic boundary conditions are taken
into account when interpolating.

• method ({‘linear’, ‘nearest’, ‘cubic’}, optional) – Method of interpolation. One of:

nearest return the value at the data point closest to the point of interpolation. See SciPy’s
NearestNDInterpolator for more details.

6.5. API 59

https://pubs.acs.org/doi/full/10.1021/jacs.9b11057
https://pubs.acs.org/doi/10.1021/acs.jctc.8b00933

lipyphilic, Release 0.9.0

linear tessellate the input point set to N-D simplices, and interpolate linearly on each
simplex. See SciPy’s LinearNDInterpolator for more details.

cubic return the value determined from a piecewise cubic, continuously differen-
tiable (C1), and approximately curvature-minimizing polynomial surface. See SciPy’s
CloughTocher2DInterpolator for more details.

• fill_value (float, optional) – Value used to fill in for requested points outside of the convex
hull of the input points. This option has no effect for the ‘nearest’ method. If not provided,
then the these points will have NaN values.

• rescale (bool, optional) – Rescale points to unit cube before performing interpolation. This
is useful if some of the input dimensions have incommensurable units and differ by many
orders of magnitude.

plot_projection(ax=None, title=None, xlabel=None, ylabel=None, cmap=None, vmin=None,
vmax=None, cbar=True, cbar_kws={}, imshow_kws={})

Plot the 2D projection of a membrane property.

Use matplotlib.pyplot.imshow to plot a heatmap of the values.

Parameters

• ax (Axes, optional) – Matplotlib Axes on which to plot the projection. The default is None,
in which case a new figure and axes will be created.

• title (str, optional) – Title for the plot. By default, there is no title.

• xlabel (str, optional) – Label for the x-axis. By default, there is no label on the x-axis.

• ylabel (str, optional) – Label for the y-axis. By default, there is no label on the y-axis.

• cmap (str or ~matplotlib.colors.Colormap, optional) – The Colormap instance or registered
colormap name used to map scalar data to colors.

• vmin, vmax (float, optional) – Define the data range that the colormap covers. By default,
the colormap covers the complete value range of the supplied data.

• cbar (bool, optional) – Whether or not to add a colorbar to the plot.

• cbar_kws (dict, optional) – A dictionary of keyword options to pass to mat-
plotlib.pyplot.colorbar.

• imshow_kws (dict, optional) – A dictionary of keyword options to pass to mat-
plotlib.pyplot.imshow, which is used to plot the 2D density map.

Returns

• ProjectionPlot.fig – Matplotlib Figure on which the plot was drawn.

• ProjectionPlot.ax – Matplotlib Axes on which the plot was drawn.

• ProjectionPlot.cbar – If a colorbar was added to the plot, this is the Matplotlib colorbar
instance for ProjectionPlot.ax. Otherwise it is None.

project_values(bins, statistic='mean')
Discretise the membrane and project values onto the xy-plane

Parameters

• bins (int or array_like or [int, int] or [array, array]) – The bin specification:

int If int, the number of bins for the two dimensions (nx=ny=bins).

array-like If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).

60 Chapter 6. Contents

lipyphilic, Release 0.9.0

[int, int] If [int, int], the number of bins in each dimension (nx, ny = bins).

[array, array] If [array, array], the bin edges in each dimension (x_edges, y_edges =
bins).

combination A combination [int, array] or [array, int], where int is the number of bins
and array is the bin edges.

• statistic (string or callable, optional) – The statistic to project onto the membrae plane
(the default is ‘mean’). The following statistics are available:

mean compute the mean of values for points within each bin. Empty bins will be repre-
sented by NaN.

std` compute the standard deviation within each bin.

median compute the median of values for points within each bin. Empty bins will be
represented by NaN.

count compute the count of points within each bin. This is identical to an unweighted
histogram. The value of the membrane property is not referenced.

sum compute the sum of values for points within each bin. This is identical to a weighted
histogram.

min compute the minimum of values for points within each bin. Empty bins will be rep-
resented by NaN.

max compute the maximum of values for point within each bin. Empty bins will be repre-
sented by NaN.

function a user-defined function which takes a 1D array of values, and outputs a single
numerical statistic. This function will be called on the values in each bin. Empty bins
will be represented by function([]), or NaN if this returns an error.

class lipyphilic.lib.plotting.JointDensity(ob1, ob2)
Calculate and plot the joint probability density of two observables.

Set up parameters for calculating joint densities.

Parameters

• ob1 (array_like) – An array containing values of the first observable.

• ob2 (array_like) – An array containing values of the second observable. It must have the
same shape as ob1

calc_density_2D(bins, filter_by=None, temperature=None)
Calculate the joint probability density of two observables.

If a tempearutre is provided, the PMF is calculated directly from the probability distribution.

Parameters

• bins (int or array_like or [int, int] or [array, array]) – The bin specification:

int If int, the number of bins for the two dimensions (nx=ny=bins).

array-like If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).

[int, int] If [int, int], the number of bins in each dimension (nx, ny = bins).

[array, array] If [array, array], the bin edges in each dimension (x_edges, y_edges =
bins).

6.5. API 61

lipyphilic, Release 0.9.0

combination A combination [int, array] or [array, int], where int is the number of bins
and array is the bin edges.

• filter_by (2D numpy array of shape (n_residues, n_frames), optional) – A boolean mask
for filtering lipids or frames. The default is None, in which case no filtering is performed.

• temperature (float, optional) – Temperature of the system, which will be used to convert
the 2D density into a PMF. The default is None, in which case the density is returned rather
than the PMF.

interpolate(method='linear', fill_value=None, rescale=True)
Interpolate NaN values in the joint probability density or PMF.

Uses scipy.interpolate.griddata to interpolate the joint density and optionally remove NaN values.

Parameters

• method ({‘linear’, ‘nearest’, ‘cubic’}, optional) – Method of interpolation. One of:

nearest return the value at the data point closest to the point of interpolation. See SciPy’s
NearestNDInterpolator for more details.

linear tessellate the input point set to N-D simplices, and interpolate linearly on each
simplex. See SciPy’s LinearNDInterpolator for more details.

cubic return the value determined from a piecewise cubic, continuously differen-
tiable (C1), and approximately curvature-minimizing polynomial surface. See SciPy’s
CloughTocher2DInterpolator for more details.

• fill_value (float, optional) – Value used to fill in for requested points outside of the convex
hull of the input points. This option has no effect for the ‘nearest’ method. If not provided,
then the default is to use the maximum free energy value if a PMF was calculated, or 0
otherwise.

• rescale (bool, optional) – Rescale points to unit cube before performing interpolation. This
is useful if some of the input dimensions have incommensurable units and differ by many
orders of magnitude.

plot_density(difference=None, ax=None, title=None, xlabel=None, ylabel=None, cmap=None,
vmin=None, vmax=None, n_contours=4, contour_labels=None, cbar=True, cbar_kws={},
imshow_kws={}, contour_kws={}, clabel_kws={})

Plot the 2D density or PMF.

Use matplotlib.pyplot.imshow to plot a heatmap of the density.

Optionally, add contour lines using matplotlib.pyplot.contour and label the contours with their values.

Parameters

• difference (JointDensity, optional) – A JointDensity object for which the probability den-
sity or PMF has been calculated. Before ploting, the density or PMF of difference will be
subtracted from the density of PMF of this object. This is useful for plotting difference in
PMFs due to e.g a change in membrane lipid composition.

• ax (Axes, optional) – Matplotlib Axes on which to plot the 2D denstiy. The default is None,
in which case a new figure and axes will be created.

• title (str, optional) – Title for the plot. By default, there is no title.

• xlabel (str, optional) – Label for the x-axis. By default, there is no label on the x-axis.

• ylabel (str, optional) – Label for the y-axis. By default, there is no label on the y-axis.

62 Chapter 6. Contents

lipyphilic, Release 0.9.0

• cmap (str or ~matplotlib.colors.Colormap, optional) – The Colormap instance or registered
colormap name used to map scalar data to colors.

• vmin, vmax (float, optional) – Define the data range that the colormap covers. By default,
the colormap covers the complete value range of the supplied data.

• n_contours (int or array-like, optional) – Determines the number and positions of the
contour lines / regions plotted with matplotlib.pyplot.contour:

int If an int n, use ~matplotlib.ticker.MaxNLocator, which tries to automatically choose
no more than n+1 “nice” contour levels between vmin and vmax.

array-like If array-like, draw contour lines at the specified levels. The values must be
in increasing order.

0 If 0, no contour lines are drawn.

• contour_labels (array-like, optional) – A list of contour level indices specifyig which lev-
les should be labeled. The default is None, in which case no contours are labeled.

• cbar (bool, optional) – Whether or not to add a colorbar to the plot.

• cbar_kws (dict, optional) – A dictionary of keyword options to pass to mat-
plotlib.pyplot.colorbar.

• imshow_kws (dict, optional) – A dictionary of keyword options to pass to mat-
plotlib.pyplot.imshow, which is used to plot the 2D density map.

• contour_kws (dict, optional) – A dictionary of keyword options to pass to mat-
plotlib.pyplot.contour, which is used to plot the contour lines.

• clabel_kws (dict, optional) – A dictionary of keyword options to pass to mat-
plotlib.pyplot.contour, which is used to add labels to the contour lines.

Returns

• JointDensity.fig – Matplotlib Figure on which the plot was drawn.

• JointDensity.ax – Matplotlib Axes on which the plot was drawn.

• JointDensity.cbar – If a colorbar was added to the plot, this is the Matplotlib colorbar
instance for JointDensity.ax. Otherwise it is None.

6.5.13 Trajectory transformations — lipyphilic.transformations

This module contains methods for applying on-the-fly trajectory transformations with MDAnalysis.

Prevent atoms from jumping across periodic boundaries

lipyphilic.transformations.nojump can be used to prevent atoms from jumping across periodic boundaries. It
is equivalent to using the GROMACS command trjconv with the flag -pbc nojump.

The on-the-fly transformation can be added to your trajectory after loading it with MDAnalysis:

import MDAnalysis as mda
from lipyphilic.transformations import nojump

u = mda.Universe("production.tpr", "production.xtc")

ag = u.select_atoms("name GL1 GL2 ROH")
(continues on next page)

6.5. API 63

https://manual.gromacs.org/current/index.html
https://manual.gromacs.org/current/onlinehelp/gmx-trjconv.html

lipyphilic, Release 0.9.0

(continued from previous page)

u.trajectory.add_transformations(nojump(ag))

Upon adding this transformation to your trajectory, lipyphilic will determine at which frames each atom crosses a
boundary, keeping a record of the net movement across each boundary. Then, every time a new frame is loaded into
memory by MDAnalysis — such as when you iterate over the trajectory — the transformation is applied.

This transformation is required when calculating the lateral diffusion of lipids in a membrane using, for example,
lipyphilic.lib.lateral_diffusion.MSD. It can be used to remove the need to create an unwrapped trajectory
using GROMACS.

Fix membranes broken across periodic boundaries

The callable class lipyphilic.transformations.center_membrane can be used to fix a membrane split across
periodic boundaries and then center it in the unit cell. The membrane is iteratively shifted along a dimension until it is
no longer split across periodic boundaries. It is then moved it to the center of the box in this dimension.

The on-the-fly transformation can be added to your trajectory after loading it with MDAnalysis:

import MDAnalysis as mda
from lipyphilic.transformations import center_membrane

u = mda.Universe("production.tpr", "production.xtc")

ag = u.select_atoms("resname DPPC DOPC CHOL")

u.trajectory.add_transformations(center_membrane(ag))

This will center a DPPC/DOPC/cholesterol membrane in 𝑧 every time a new frame is loaded into memory by MDAnal-
ysis, such as when you iterate over the trajectory:

for ts in u.trajectory:

do some nice analysis with your centered membrane

Note: ag should be an AtomGroup that contains all atoms in the membrane.

Transform triclinic coordinates to their orthorhombic representation

lipyphilic.transformations.triclinic_to_orthorhombic can be used to transform triclinic coordinates to
their orthorhombic representation. It is equivalent to using the GROMACS command trjconv with the flag -ur rect.

The on-the-fly transformation can be added to your trajectory after loading it with MDAnalysis:

import MDAnalysis as mda
from lipyphilic.transformations import triclinic_to_orthorhombic

u = mda.Universe("production.tpr", "production.xtc")

ag = u.select_atoms("resname DPPC DOPC CHOL")
u.trajectory.add_transformations(triclinic_to_orthorhombic(ag=ag))

64 Chapter 6. Contents

https://manual.gromacs.org/current/index.html
https://manual.gromacs.org/current/onlinehelp/gmx-trjconv.html

lipyphilic, Release 0.9.0

After adding this transformation, upon load a new frame into memory the coordinates of the selected atoms will be
transformed, and the dimensions of your system will be modified so that the angles are all 90°. Further analysis may
then be performed using the orthorhombic coordinate system.

Some analyses in lipyphilic create a surface of the membrane plane using a two-dimensional rectangular grid. This
includes

• lipyphilic.lib.assign_leaflet.AssignLeaflets

• lipyphilic.lib.memb_thickness.MembThicnkess

• lipyphilic.lib.registration.Registration

These analyses will fail with triclinic boxes - the triclinic_to_orthorhombic transformation must be applied to triclinic
systems before these tools can be used.

Another case that will fail with triclinic systems is the lipyphilic.transformations.nojump transformation - this
transformation can currently only unwrap coordinates for orthorhombic systems.

See lipyphilic.transformations.triclinic_to_orthorhombic for the full list.

class lipyphilic.transformations.nojump(ag, nojump_x=True, nojump_y=True, nojump_z=False,
filename=None)

Prevent atoms jumping across periodic boundaries.

This is useful if you would like to calculate the diffusion coefficient of lipids in your membrane.

This transformation does an initial pass over the trajectory to determine at which frames each atom crosses a
boundary, keeping a record of the net movement across each boundary. Then, as a frame is loaded into memory,
atom positions are translated according to their total displacement, taking into account crossing of boundaries as
well box fluctuations in the box volume.

By default, atoms are only unwrapped in 𝑥𝑦, as it is assumed the membrane is a bilayer. To unwrap in all
dimensions, center_z must also be set to True.

Parameters

• ag (AtomGroup) – MDAnalysis AtomGroup to which to apply the transformation

• nojump_x (bool, optional) – If true, atoms will be prevented from jumping across periodic
boundaries in the x dimension.

• nojump_y (bool, optional) – If true, atoms will be prevented from jumping across periodic
boundaries in the y dimension.

• nojump_z (bool, optional) – If true, atoms will be prevented from jumping across periodic
boundaries in the z dimension.

• filename (str, optional) – File in which to write the unwrapped, nojump trajectory. The
default is None, in which case the transformation will be applied on-the-fly.py

Returns MDAnalysis.coordinates.base.Timestep object, or None if a filename is provided.

Note: The nojump transformation is memory intensive to perform on-the-fly. If you have a long trajectory or a
large number of atoms to be unwrapped, you can write the unwrapped coordinates to a new file by providing a
filename to nojump.

Warning: The current implementation of nojump can only unwrap coordinates in orthorhombic systems.

6.5. API 65

lipyphilic, Release 0.9.0

class lipyphilic.transformations.center_membrane(ag, shift=20, center_x=False, center_y=False,
center_z=True, min_diff=10)

Fix a membrane split across periodic boundaries and center it in the primary unit cell.

If, for example, the bilayer is split across 𝑧, it will be iteratively translated in 𝑧 until it is no longer broken. Then
it will be moved to the center of the box.

A membrane with a maximum extent almost the same size as the box length in a given dimension will be con-
sidered to be split across that dimension.

By default, the membrane is only centered in 𝑧, as it is assumed the membrane is a bilayer. To center a micelle,
center_x and center_y must also be set to True.

Parameters

• ag (AtomGroup) – MDAnalysis AtomGroup containing all atoms in the membrane.

• shift (float, optional) – The distance by which a bilayer will be iteratively translated. This
must be smaller than the thickness of your bilayer or the diameter of your micelle.

• min_diff (float, optional) – Minimum difference between the box size and the maximum
extent of the membrane in order for the membrane to be considered unwrapped.

• center_x (bool, optional) – If true, the membrane will be iteratively shifted in x until it is
not longer split across periodic boundaries.

• center_y (bool, optional) – If true, the membrane will be iteratively shifted in y until it is
not longer split across periodic boundaries.

• center_z (bool, optional) – If true, the membrane will be iteratively shifted in z until it is not
longer split across periodic boundaries.

Returns MDAnalysis.coordinates.base.Timestep object

class lipyphilic.transformations.triclinic_to_orthorhombic(ag)
Transform triclinic coordinates to their orthorhombic representation.

If you have a triclinic system, it is essential to apply this transformation before using the following analyses:

• lipyphilic.lib.assign_leaflet.AssignLeaflets

• lipyphilic.lib.area_per_lipid.AreaPerLipid

• lipyphilic.lib.memb_thickness.MembThicnkess

• lipyphilic.lib.registration.Registration

as well as before the following on-the-fly transformations:

• lipyphilic.transformations.nojump

• lipyphilic.transformations.center_membrane

The above tools will fail unless provided with an orthorhombic system.

This transformation is equivalent to using the GROMACS command trjconv with the flag -ur rect.

Note: triclinic_to_rectangular will put all selected atoms into the primary (orthorhombic) unit cell - molecules
will not be kept whole or unwrapped.

Warning: If you wish to apply the triclinic_to_orthorhombic transformation along with other on-the-fly
transformations, triclinic_to_orthorhombic must be the first one applied.

66 Chapter 6. Contents

https://manual.gromacs.org/current/index.html
https://manual.gromacs.org/current/onlinehelp/gmx-trjconv.html

lipyphilic, Release 0.9.0

Parameters ag (AtomGroup) – MDAnalysis AtomGroup to which to apply the transformation

6.6 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

6.6.1 Bug reports

When reporting a bug please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

6.6.2 Documentation improvements

lipyphilic could always use more documentation, whether as part of the official lipyphilic docs, in docstrings, or even
on the web in blog posts, articles, and such.

6.6.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/p-j-smith/lipyphilic/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that code contributions are welcome :)

6.6.4 Development

To set up lipyphilic for local development:

1. Create and activate your isolated development environment:

curl https://raw.githubusercontent.com/p-j-smith/lipyphilic/master/requirements-dev.
→˓yml -o lipyphilic-dev.yml
conda env create -f lipyphilic-dev.yml
conda activate lipyphilic-dev

2. Fork lipyphilic (look for the “Fork” button).

3. Clone your fork locally:

git clone git@github.com:YOURGITHUBNAME/lipyphilic.git

4. Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

6.6. Contributing 67

https://github.com/p-j-smith/lipyphilic/issues
https://lipyphilic.readthedocs.io/en/latest/
https://github.com/p-j-smith/lipyphilic/issues
https://github.com/p-j-smith/lipyphilic

lipyphilic, Release 0.9.0

Now you can make your changes locally.

5. When you’re done making changes run all the checks and docs builder with tox one command:

tox

6. Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

1. Include passing tests (run tox)1.

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG.rst about the changes.

4. Add yourself to AUTHORS.rst.

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel:

tox -p auto

To check that the docs build:

tox -e docs

And to check the build and test coverage (using python 3.8):

tox -e py38-cover

1 If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.

It will be slower though . . .

68 Chapter 6. Contents

https://tox.readthedocs.io/en/latest/install.html
https://travis-ci.com//github/p-j-smith/lipyphilic/pull_requests

lipyphilic, Release 0.9.0

6.7 Authors

LiPyphilic was created by Paul Smith.

6.7.1 Authors (chronological)

• Paul Smith

• Raquel Lopez-Rios

6.8 LiPyphilic CHANGELOG

6.8.1 0.9.0 (2021-09-02)

• PR#78 Min MDAnalysis version increased to 2.0

6.8.2 0.8.0 (2021-07-31)

• PR#74 Add the triclinic_to_orthorhombic transformation in order to support analysis of triclinic systems

6.8.3 0.7.0 (2021-07-03)

• PR#70 Remove support for Python 3.6

• PR#69 Change MSD lagtimes to be in ns rather than ps. Fix nojump unwrapping for the first frame.

6.8.4 0.6.3 (2021-05-09)

• PR#60 AssignLeaflets and AssignCurvedLeaflets inherit from shared leaflet analysis base class

• PR#59 Ensure SCC.weighted_average can handle different sized sn1 and sn2 residue groups.

• PR#56 Update docs

6.8.5 0.6.2 (2021-04-18)

• PR#54 Fixed typos in docs

• PR#53 Improved performance of lipyphilic.lib.flip_flop.FlipFlop

• PR#52 Improved performance of lipyphilic.lib.neighbours.Neighbours (Fixes #51)

6.7. Authors 69

lipyphilic, Release 0.9.0

6.8.6 0.6.1 (2021-04-16)

• PR#49 Add min_diff argument to transformations.center_membrane

• PR#48 Add MDAnalysis badge to README and fix typos in the docs

• PR#47 Fixed typos in docs

6.8.7 0.6.0 (2021-03-26)

• PR#44 Refactor the Registration analysis to have a more useful API

• PR#43 Add a method for calculating the lipid enrichment/depletion index

• PR#42 Add a MSD and lateral diffusion analysis, as well as a transformation to perform “nojump” unwrapping.

• PR#39 Add support for assigning lipids to leaflets of highly curved membranes

6.8.8 0.5.0 (2021-03-16)

• PR#38 Add a trajectory transformation for unwrapping broken membranes (Fixes #37)

• PR#36 Add method for projecting areas onto the membrane plane (Fixes #33)

• PR#35 Added a tool for calculating membrane thickness (Fixes #34)

• PR#32 ZThickness.average() now returns a new ZThickness object rather than a NumPy array

• PR#31 SCC.weighted_average() now returns a new SCC object rather than a NumPy array

• PR#30 Add class for plotting projections of membrane properties onto the xy plane.

• PR#29 Added plotting of joint probability distributions or PMFs (Fixed #28).

6.8.9 0.4.0 (2021-03-05)

• PR#26 Added a tool to calculate the thickness of lipids or their tails (Fixes #25)

• PR#24 Added a tool to calculate the coarse-grained order parameter (Fixes #23)

• PR#22 Added a tool to calculate orientation of lipids in a bilayer (Fixes #20)

• PR#21 Added a tool to calculate lipid height in a bilayer (Fixes #19)

• Better description of analysis tools in the docs

• Updated installation instructions, including installing via conda-forge

6.8.10 0.3.2 (2021-02-27)

• Fix typo in requirements

70 Chapter 6. Contents

lipyphilic, Release 0.9.0

6.8.11 0.3.1 (2021-02-27)

• Add support for numpy 1.20

6.8.12 0.3.0 (2021-02-26)

• Fix neighbour calculation for non-sequential residue indices Fixes #11

• Added a tool to calculate interleaflet registration

6.8.13 0.2.0 (2021-02-23)

• Improved documentation

• Add method to count number of each neighbour type

• Add functionality to find neighbouring lipids

6.8.14 0.1.0 (2021-02-17)

• Add functionality to find flip-flop events in bilayers

• Add functionality to calculate area per lipid

• Add functionality to find assign lipids to leaflets in a bilayer

6.8.15 0.0.0 (2021-02-08)

• First release on PyPI.

6.8. LiPyphilic CHANGELOG 71

lipyphilic, Release 0.9.0

72 Chapter 6. Contents

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

73

lipyphilic, Release 0.9.0

74 Chapter 7. Indices and tables

PYTHON MODULE INDEX

l
lipyphilic.lib.area_per_lipid, 38
lipyphilic.lib.assign_leaflets, 22
lipyphilic.lib.flip_flop, 27
lipyphilic.lib.lateral_diffusion, 55
lipyphilic.lib.memb_thickness, 53
lipyphilic.lib.neighbours, 33
lipyphilic.lib.order_parameter, 42
lipyphilic.lib.plotting, 59
lipyphilic.lib.registration, 30
lipyphilic.lib.z_angles, 46
lipyphilic.lib.z_positions, 48
lipyphilic.lib.z_thickness, 50
lipyphilic.transformations, 63

75

lipyphilic, Release 0.9.0

76 Python Module Index

INDEX

A
AreaPerLipid (class in lipyphilic.lib.area_per_lipid),

40
AssignCurvedLeaflets (class in

lipyphilic.lib.assign_leaflets), 26
AssignLeaflets (class in lipyphilic.lib.assign_leaflets),

26
average() (lipyphilic.lib.z_thickness.ZThickness static

method), 52

C
calc_density_2D() (lipyphilic.lib.plotting.JointDensity

method), 61
center_membrane (class in lipyphilic.transformations),

65
count_neighbours() (lipyphilic.lib.neighbours.Neighbours

method), 37

D
diffusion_coefficient()

(lipyphilic.lib.lateral_diffusion.MSD method),
58

F
filter_leaflets() (lipyphilic.lib.assign_leaflets.AssignCurvedLeaflets

method), 27
FlipFlop (class in lipyphilic.lib.flip_flop), 29

I
interpolate() (lipyphilic.lib.plotting.JointDensity

method), 62
interpolate() (lipyphilic.lib.plotting.ProjectionPlot

method), 59

J
JointDensity (class in lipyphilic.lib.plotting), 61

L
largest_cluster() (lipyphilic.lib.neighbours.Neighbours

method), 38
lipyphilic.lib.area_per_lipid

module, 38
lipyphilic.lib.assign_leaflets

module, 22
lipyphilic.lib.flip_flop

module, 27
lipyphilic.lib.lateral_diffusion

module, 55
lipyphilic.lib.memb_thickness

module, 53
lipyphilic.lib.neighbours

module, 33
lipyphilic.lib.order_parameter

module, 42
lipyphilic.lib.plotting

module, 59
lipyphilic.lib.registration

module, 30
lipyphilic.lib.z_angles

module, 46
lipyphilic.lib.z_positions

module, 48
lipyphilic.lib.z_thickness

module, 50
lipyphilic.transformations

module, 63

M
MembThickness (class in lipyphilic.lib.memb_thickness),

55
module

lipyphilic.lib.area_per_lipid, 38
lipyphilic.lib.assign_leaflets, 22
lipyphilic.lib.flip_flop, 27
lipyphilic.lib.lateral_diffusion, 55
lipyphilic.lib.memb_thickness, 53
lipyphilic.lib.neighbours, 33
lipyphilic.lib.order_parameter, 42
lipyphilic.lib.plotting, 59
lipyphilic.lib.registration, 30
lipyphilic.lib.z_angles, 46
lipyphilic.lib.z_positions, 48
lipyphilic.lib.z_thickness, 50

77

lipyphilic, Release 0.9.0

lipyphilic.transformations, 63
MSD (class in lipyphilic.lib.lateral_diffusion), 58

N
Neighbours (class in lipyphilic.lib.neighbours), 37
nojump (class in lipyphilic.transformations), 65

P
plot_density() (lipyphilic.lib.plotting.JointDensity

method), 62
plot_projection() (lipyphilic.lib.plotting.ProjectionPlot

method), 60
project_area() (lipyphilic.lib.area_per_lipid.AreaPerLipid

method), 40
project_SCC() (lipyphilic.lib.order_parameter.SCC

method), 44
project_values() (lipyphilic.lib.plotting.ProjectionPlot

method), 60
ProjectionPlot (class in lipyphilic.lib.plotting), 59

R
Registration (class in lipyphilic.lib.registration), 33

S
SCC (class in lipyphilic.lib.order_parameter), 44

T
triclinic_to_orthorhombic (class in

lipyphilic.transformations), 66

W
weighted_average() (lipyphilic.lib.order_parameter.SCC

static method), 46

Z
ZAngles (class in lipyphilic.lib.z_angles), 48
ZPositions (class in lipyphilic.lib.z_positions), 50
ZThickness (class in lipyphilic.lib.z_thickness), 52

78 Index

	Overview
	Interactive tutorials
	Basic Usage
	Installation
	Citing
	Contents
	Installation
	Conda
	PyPI
	Dependencies

	Basic Usage
	Interactive tutorials
	Overview of analysis tools
	Assign leaflets: lipyphilic.lib.assign_leaflets
	Flip-flop: lipyphilic.lib.flip_flop
	Interlealet registration: lipyphilic.lib.registration
	Neighbours: lipyphilic.lib.neighbours
	Area per lipid: lipyphilic.lib.area_per_lipid
	Lipid order parameter — lipyphilic.lib.order_parameter
	Lipid z angles: lipyphilic.lib.z_angles
	Lipid z positions: lipyphilic.lib.z_positions
	Lipid z thickness: lipyphilic.lib.z_thickness
	Membrane z thickness: lipyphilic.lib.memb_thickness
	Lateral diffusion lipyphilic.lib.lateral_diffusion
	Plotting utilities: lipyphilic.lib.plotting
	On-the-fly transformations lipyphilic.transformations

	API
	Assign leaflets — lipyphilic.lib.assign_leaflets
	Assigning leaflets in planar bilayers
	Input
	Output
	Example usage of AssignLeaflets
	Allowing lipids in the midplane
	Changing the resolution of the membrane grid

	Assigning leaflets in membranes with high curvature
	Input
	Output
	Example usage of AssignCurvedLeaflets

	The classes and their methods

	Flip-flop — lipyphilic.lib.flip_flop
	Input
	Output
	Example usage of FlipFlop
	Specify minimum residence time for successful flip-flops
	Calculating the flip-flop rate

	The class and its methods

	Registration — lipyphilic.lib.registration
	Input
	Output
	Example usage of Registration
	Selecting a subset of lipids for the registration analysis
	Changing the resolution of the 2D grid
	Changing the standard deviation of the circular Gaussian density

	The class and its methods

	Neighbours — lipyphilic.lib.neighbours
	Input
	Output
	Example usage of Neighbours
	Counting the number of neighbours: by lipid species
	Counting the number of neighbours: by user-defined labels
	Calculate the enrichment index of lipid species
	Find the largest cluster
	Find the largest cluster in a given leaflet
	Get residue indices of lipids in the largest cluster

	The class and its methods

	Area per lipid — lipyphilic.lib.area_per_lipid
	Input
	Output
	Example usage of AreaPerLipid
	The class and its methods

	Lipid order parameter — lipyphilic.lib.order_parameter
	Coarse-grained order parameter
	Input
	Output
	Example usage of Scc
	Local membrane normals
	SCC projected onto the membrane plane
	The class and its methods

	Lipid z angles — lipyphilic.lib.z_angles
	Input
	Output
	Example usage of ZAngles
	Calculate the angle in radians

	The class and its methods

	Lipid z positions — lipyphilic.lib.z_positions
	Input
	Output
	Example usage of ZPositions
	z positions based on local membrane midpoints

	The class and its methods

	Lipid z thickness — lipyphilic.lib.z_thickness
	Input
	Output
	Example usage of ZThickness
	Averaging the thickness of two tails

	The class and its methods

	Membrane thickness — lipyphilic.lib.memb_thickness
	Input
	Output
	Example usage of MembThickness
	Changing the resolution of the 2D grid
	Interpolate missing values in a grid with many bins

	The class and its methods

	Lateral diffusion — lipyphilic.lib.lateral_diffusion
	Input
	Output
	Example usage of MSD
	Center of mass removal
	Plotting the MSD of each species
	Calculating the lateral diffusion coefficient

	Plotting utilities — lipyphilic.lib.plotting
	The classes and their methods

	Trajectory transformations — lipyphilic.transformations
	Prevent atoms from jumping across periodic boundaries
	Fix membranes broken across periodic boundaries
	Transform triclinic coordinates to their orthorhombic representation

	Contributing
	Bug reports
	Documentation improvements
	Feature requests and feedback
	Development
	Pull Request Guidelines
	Tips

	Authors
	Authors (chronological)

	LiPyphilic CHANGELOG
	0.9.0 (2021-09-02)
	0.8.0 (2021-07-31)
	0.7.0 (2021-07-03)
	0.6.3 (2021-05-09)
	0.6.2 (2021-04-18)
	0.6.1 (2021-04-16)
	0.6.0 (2021-03-26)
	0.5.0 (2021-03-16)
	0.4.0 (2021-03-05)
	0.3.2 (2021-02-27)
	0.3.1 (2021-02-27)
	0.3.0 (2021-02-26)
	0.2.0 (2021-02-23)
	0.1.0 (2021-02-17)
	0.0.0 (2021-02-08)

	Indices and tables
	Python Module Index
	Index

